File size: 27,368 Bytes
83d51a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
"""
🐞 Enhanced Bug Report Analysis Agent
=====================================
A comprehensive RAG-based system for analyzing bug reports, finding similar issues,
and suggesting fixes with evaluation metrics for retrieval relevance and usefulness.
"""

import os
import pandas as pd
import numpy as np
import gradio as gr
import sqlite3
import json
import ast
import re
from datetime import datetime, timedelta
from typing import List, Dict, Tuple, Optional
import logging

# Core RAG and ML imports
from sentence_transformers import SentenceTransformer
import faiss
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.feature_extraction.text import TfidfVectorizer
import nltk
from fuzzywuzzy import fuzz, process

# LangChain imports
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.docstore.document import Document

# Evaluation metrics
from rouge_score import rouge_scorer
import difflib

# Download required NLTK data
try:
    nltk.download('punkt', quiet=True)
    nltk.download('stopwords', quiet=True)
except:
    pass

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class BugReportRAG:
    """Enhanced RAG system for bug report analysis"""
    
    def __init__(self):
        self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
        self.tfidf_vectorizer = TfidfVectorizer(stop_words='english', max_features=1000)
        self.bug_index = None
        self.code_index = None
        self.bug_data = None
        self.code_data = None
        self.text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=500,
            chunk_overlap=50,
            separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""]
        )
        
    def load_and_index_data(self):
        """Load and index bug reports and code files"""
        logger.info("Loading and indexing data...")
        
        # Load bug reports
        self._load_bug_reports()
        
        # Load and process code files
        self._load_code_files()
        
        # Create FAISS indices
        self._create_faiss_indices()
        
        logger.info("Data loading and indexing completed")
    
    def _load_bug_reports(self):
        """Load and process bug reports from CSV"""
        try:
            df = pd.read_csv("bug_reports.csv")
            
            # Create comprehensive text representation for each bug
            bug_texts = []
            bug_metadata = []
            
            for _, row in df.iterrows():
                # Combine relevant fields for better semantic search
                text_parts = [
                    f"Title: {row.get('title', '')}",
                    f"Description: {row.get('description', '')}",
                    f"Component: {row.get('component', '')}",
                    f"Severity: {row.get('severity', '')}",
                    f"Status: {row.get('status', '')}",
                ]
                
                if pd.notna(row.get('fix_description')):
                    text_parts.append(f"Fix: {row['fix_description']}")
                
                bug_text = " | ".join(text_parts)
                bug_texts.append(bug_text)
                
                # Store metadata
                metadata = {
                    'id': row.get('id', ''),
                    'title': row.get('title', ''),
                    'description': row.get('description', ''),
                    'severity': row.get('severity', ''),
                    'status': row.get('status', ''),
                    'component': row.get('component', ''),
                    'fix_description': row.get('fix_description', ''),
                    'related_files': row.get('related_files', ''),
                    'created_date': row.get('created_date', ''),
                    'resolved_date': row.get('resolved_date', ''),
                }
                bug_metadata.append(metadata)
            
            self.bug_data = {
                'texts': bug_texts,
                'metadata': bug_metadata
            }
            
        except Exception as e:
            logger.error(f"Error loading bug reports: {e}")
            self.bug_data = {'texts': [], 'metadata': []}
    
    def _load_code_files(self):
        """Load and process code files"""
        code_texts = []
        code_metadata = []
        
        for root, dirs, files in os.walk("codebase"):
            for file in files:
                if file.endswith(('.py', '.js', '.html', '.css')):
                    file_path = os.path.join(root, file)
                    try:
                        with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
                            content = f.read()
                            
                        # Split large files into chunks
                        if len(content) > 1000:
                            chunks = self.text_splitter.split_text(content)
                            for i, chunk in enumerate(chunks):
                                code_texts.append(f"File: {file} | {chunk}")
                                code_metadata.append({
                                    'file_path': file_path,
                                    'file_name': file,
                                    'chunk_index': i,
                                    'total_chunks': len(chunks)
                                })
                        else:
                            code_texts.append(f"File: {file} | {content}")
                            code_metadata.append({
                                'file_path': file_path,
                                'file_name': file,
                                'chunk_index': 0,
                                'total_chunks': 1
                            })
                            
                    except Exception as e:
                        logger.warning(f"Error reading {file_path}: {e}")
        
        self.code_data = {
            'texts': code_texts,
            'metadata': code_metadata
        }
    
    def _create_faiss_indices(self):
        """Create FAISS indices for efficient similarity search"""
        # Create bug report index
        if self.bug_data['texts']:
            bug_embeddings = self.embedding_model.encode(self.bug_data['texts'])
            self.bug_index = faiss.IndexFlatIP(bug_embeddings.shape[1])
            # Normalize embeddings for cosine similarity
            faiss.normalize_L2(bug_embeddings)
            self.bug_index.add(bug_embeddings.astype('float32'))
        
        # Create code index
        if self.code_data['texts']:
            code_embeddings = self.embedding_model.encode(self.code_data['texts'])
            self.code_index = faiss.IndexFlatIP(code_embeddings.shape[1])
            faiss.normalize_L2(code_embeddings)
            self.code_index.add(code_embeddings.astype('float32'))
    
    def search_similar_bugs(self, query: str, k: int = 5) -> List[Dict]:
        """Search for similar bug reports"""
        if not self.bug_index or not self.bug_data['texts']:
            return []
        
        # Encode query
        query_embedding = self.embedding_model.encode([query])
        faiss.normalize_L2(query_embedding)
        
        # Search
        scores, indices = self.bug_index.search(query_embedding.astype('float32'), k)
        
        results = []
        for score, idx in zip(scores[0], indices[0]):
            if idx < len(self.bug_data['metadata']):
                result = self.bug_data['metadata'][idx].copy()
                result['similarity_score'] = float(score)
                results.append(result)
        
        return results
    
    def search_relevant_code(self, query: str, k: int = 5) -> List[Dict]:
        """Search for relevant code sections"""
        if not self.code_index or not self.code_data['texts']:
            return []
        
        # Encode query
        query_embedding = self.embedding_model.encode([query])
        faiss.normalize_L2(query_embedding)
        
        # Search
        scores, indices = self.code_index.search(query_embedding.astype('float32'), k)
        
        results = []
        for score, idx in zip(scores[0], indices[0]):
            if idx < len(self.code_data['metadata']):
                result = self.code_data['metadata'][idx].copy()
                result['similarity_score'] = float(score)
                result['code_text'] = self.code_data['texts'][idx]
                results.append(result)
        
        return results

class BugAnalysisEvaluator:
    """Evaluate the quality and relevance of bug analysis results"""
    
    def __init__(self):
        self.rouge_scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
    
    def evaluate_retrieval_relevance(self, query: str, results: List[Dict]) -> Dict:
        """Evaluate how relevant retrieved results are to the query"""
        if not results:
            return {
                'average_similarity': 0.0,
                'relevance_score': 0.0,
                'result_count': 0
            }
        
        # Calculate average similarity score
        similarity_scores = [r.get('similarity_score', 0.0) for r in results]
        average_similarity = np.mean(similarity_scores) if similarity_scores else 0.0
        
        # Calculate semantic relevance using text similarity
        query_lower = query.lower()
        relevance_scores = []
        
        for result in results:
            # Combine title and description for relevance calculation
            result_text = f"{result.get('title', '')} {result.get('description', '')}"
            relevance_score = fuzz.partial_ratio(query_lower, result_text.lower()) / 100.0
            relevance_scores.append(relevance_score)
        
        relevance_score = np.mean(relevance_scores) if relevance_scores else 0.0
        
        return {
            'average_similarity': float(average_similarity),
            'relevance_score': float(relevance_score),
            'result_count': len(results),
            'individual_scores': similarity_scores
        }
    
    def evaluate_suggestion_usefulness(self, query: str, suggestions: str) -> Dict:
        """Evaluate the usefulness of generated suggestions"""
        if not suggestions or not query:
            return {
                'completeness_score': 0.0,
                'specificity_score': 0.0,
                'actionability_score': 0.0,
                'overall_usefulness': 0.0
            }
        
        # Completeness: How well suggestions address the query
        rouge_scores = self.rouge_scorer.score(query.lower(), suggestions.lower())
        completeness_score = rouge_scores['rougeL'].fmeasure
        
        # Specificity: Presence of specific technical terms, file names, functions
        specificity_indicators = [
            r'\b\w+\.py\b',  # Python files
            r'\bdef \w+\b',   # Function definitions
            r'\bclass \w+\b', # Class definitions
            r'\b\w+\(\)',     # Function calls
            r'\bfix\b|\bupdate\b|\bchange\b|\bmodify\b',  # Action words
        ]
        
        specificity_count = sum(len(re.findall(pattern, suggestions.lower())) 
                               for pattern in specificity_indicators)
        specificity_score = min(specificity_count / 5.0, 1.0)  # Normalize to 0-1
        
        # Actionability: Presence of actionable steps
        actionable_phrases = [
            'check', 'verify', 'update', 'modify', 'fix', 'add', 'remove',
            'ensure', 'validate', 'test', 'debug', 'implement', 'configure'
        ]
        
        actionability_count = sum(1 for phrase in actionable_phrases 
                                 if phrase in suggestions.lower())
        actionability_score = min(actionability_count / 5.0, 1.0)
        
        # Overall usefulness (weighted average)
        overall_usefulness = (
            0.3 * completeness_score +
            0.4 * specificity_score +
            0.3 * actionability_score
        )
        
        return {
            'completeness_score': float(completeness_score),
            'specificity_score': float(specificity_score),
            'actionability_score': float(actionability_score),
            'overall_usefulness': float(overall_usefulness)
        }

class FixSuggestionEngine:
    """Generate intelligent fix suggestions based on analysis"""
    
    def __init__(self):
        self.common_fixes = {
            'authentication': [
                "Check password validation regex patterns",
                "Verify session management configuration",
                "Ensure proper error handling in login flow",
                "Review authentication middleware setup"
            ],
            'database': [
                "Check database connection pooling settings",
                "Review query optimization and indexing",
                "Verify transaction handling and rollbacks",
                "Check for connection timeout configurations"
            ],
            'email': [
                "Verify SMTP server configuration",
                "Check email template rendering",
                "Ensure email credentials are properly set",
                "Review email queue processing"
            ],
            'ui': [
                "Check JavaScript event listeners",
                "Verify CSS styling and responsive design",
                "Review form validation logic",
                "Ensure proper DOM element targeting"
            ]
        }
    
    def generate_suggestions(self, query: str, similar_bugs: List[Dict], 
                           relevant_code: List[Dict]) -> str:
        """Generate fix suggestions based on analysis"""
        suggestions = []
        
        # Add context-based suggestions
        suggestions.append("## πŸ” Analysis Summary")
        suggestions.append(f"Based on the query: '{query}'")
        suggestions.append("")
        
        # Add similar bug insights
        if similar_bugs:
            suggestions.append("## πŸͺ² Similar Issues Found")
            for i, bug in enumerate(similar_bugs[:3], 1):
                status = bug.get('status', 'Unknown')
                severity = bug.get('severity', 'Unknown')
                suggestions.append(f"{i}. **{bug.get('title', 'Untitled')}** (Status: {status}, Severity: {severity})")
                
                if bug.get('fix_description'):
                    suggestions.append(f"   - Previous fix: {bug['fix_description']}")
                suggestions.append("")
        
        # Add code analysis
        if relevant_code:
            suggestions.append("## πŸ’» Relevant Code Sections")
            for i, code in enumerate(relevant_code[:3], 1):
                file_name = code.get('file_name', 'Unknown file')
                suggestions.append(f"{i}. **{file_name}** (Similarity: {code.get('similarity_score', 0):.2f})")
                suggestions.append("")
        
        # Add specific fix suggestions based on component analysis
        component_suggestions = self._get_component_suggestions(query, similar_bugs)
        if component_suggestions:
            suggestions.append("## πŸ› οΈ Suggested Actions")
            for suggestion in component_suggestions:
                suggestions.append(f"- {suggestion}")
            suggestions.append("")
        
        # Add general debugging steps
        suggestions.append("## πŸ”§ General Debugging Steps")
        suggestions.extend([
            "- Review error logs and stack traces",
            "- Test in different environments (dev/staging/prod)",
            "- Check recent code changes in related files",
            "- Verify configuration settings",
            "- Run relevant test suites",
            "- Consider rollback if issue is critical"
        ])
        
        return "\n".join(suggestions)
    
    def _get_component_suggestions(self, query: str, similar_bugs: List[Dict]) -> List[str]:
        """Get component-specific suggestions"""
        suggestions = []
        query_lower = query.lower()
        
        # Identify likely component based on keywords and similar bugs
        components = [bug.get('component', '').lower() for bug in similar_bugs]
        
        # Keyword-based component detection
        if any(keyword in query_lower for keyword in ['login', 'auth', 'password', 'session']):
            suggestions.extend(self.common_fixes.get('authentication', []))
        
        if any(keyword in query_lower for keyword in ['database', 'db', 'query', 'connection']):
            suggestions.extend(self.common_fixes.get('database', []))
        
        if any(keyword in query_lower for keyword in ['email', 'smtp', 'mail', 'notification']):
            suggestions.extend(self.common_fixes.get('email', []))
        
        if any(keyword in query_lower for keyword in ['button', 'form', 'ui', 'interface', 'display']):
            suggestions.extend(self.common_fixes.get('ui', []))
        
        # Component-based suggestions from similar bugs
        for component in components:
            if component and component in self.common_fixes:
                suggestions.extend(self.common_fixes[component])
        
        return list(set(suggestions))  # Remove duplicates

# Initialize the RAG system and other components
rag_system = BugReportRAG()
evaluator = BugAnalysisEvaluator()
suggestion_engine = FixSuggestionEngine()

# Load and index data on startup
rag_system.load_and_index_data()

def analyze_bug_report(query: str) -> Tuple[str, str, str, str]:
    """Main function to analyze bug reports"""
    try:
        if not query.strip():
            return "Please enter a bug description", "", "", ""
        
        logger.info(f"Analyzing query: {query}")
        
        # Search for similar bugs and relevant code
        similar_bugs = rag_system.search_similar_bugs(query, k=5)
        relevant_code = rag_system.search_relevant_code(query, k=5)
        
        # Generate suggestions
        suggestions = suggestion_engine.generate_suggestions(query, similar_bugs, relevant_code)
        
        # Evaluate results
        bug_evaluation = evaluator.evaluate_retrieval_relevance(query, similar_bugs)
        suggestion_evaluation = evaluator.evaluate_suggestion_usefulness(query, suggestions)
        
        # Format similar bugs output
        similar_bugs_output = format_similar_bugs(similar_bugs, bug_evaluation)
        
        # Format relevant code output
        relevant_code_output = format_relevant_code(relevant_code)
        
        # Format evaluation metrics
        evaluation_output = format_evaluation_metrics(bug_evaluation, suggestion_evaluation)
        
        return similar_bugs_output, relevant_code_output, suggestions, evaluation_output
        
    except Exception as e:
        logger.error(f"Error analyzing bug report: {e}")
        return f"Error: {str(e)}", "", "", ""

def format_similar_bugs(bugs: List[Dict], evaluation: Dict) -> str:
    """Format similar bugs for display"""
    if not bugs:
        return "No similar bugs found in the database."
    
    output = [f"## πŸ” Found {len(bugs)} Similar Bug Reports"]
    output.append(f"**Relevance Score: {evaluation['relevance_score']:.2f}/1.0**")
    output.append(f"**Average Similarity: {evaluation['average_similarity']:.2f}/1.0**")
    output.append("")
    
    for i, bug in enumerate(bugs, 1):
        output.append(f"### {i}. {bug.get('title', 'Untitled Bug')}")
        output.append(f"**ID:** {bug.get('id', 'N/A')} | **Severity:** {bug.get('severity', 'N/A')} | **Status:** {bug.get('status', 'N/A')}")
        output.append(f"**Similarity:** {bug.get('similarity_score', 0):.3f}")
        output.append(f"**Component:** {bug.get('component', 'N/A')}")
        output.append("")
        output.append(f"**Description:** {bug.get('description', 'No description available')}")
        
        if bug.get('fix_description'):
            output.append(f"**Previous Fix:** {bug['fix_description']}")
        
        if bug.get('related_files'):
            output.append(f"**Related Files:** {bug['related_files']}")
        
        output.append("---")
    
    return "\n".join(output)

def format_relevant_code(code_results: List[Dict]) -> str:
    """Format relevant code sections for display"""
    if not code_results:
        return "No relevant code sections found."
    
    output = [f"## πŸ’» Found {len(code_results)} Relevant Code Sections"]
    output.append("")
    
    for i, code in enumerate(code_results, 1):
        file_name = code.get('file_name', 'Unknown file')
        similarity = code.get('similarity_score', 0)
        
        output.append(f"### {i}. {file_name}")
        output.append(f"**Similarity:** {similarity:.3f} | **Path:** {code.get('file_path', 'N/A')}")
        
        if code.get('chunk_index', 0) > 0:
            total_chunks = code.get('total_chunks', 1)
            output.append(f"**Chunk:** {code['chunk_index'] + 1}/{total_chunks}")
        
        output.append("")
        
        # Extract and display code snippet
        code_text = code.get('code_text', '')
        if 'File:' in code_text:
            _, code_content = code_text.split('|', 1)
            code_content = code_content.strip()
        else:
            code_content = code_text
        
        # Limit code display length
        if len(code_content) > 500:
            code_content = code_content[:500] + "\n... (truncated)"
        
        output.append("```python")
        output.append(code_content)
        output.append("```")
        output.append("---")
    
    return "\n".join(output)

def format_evaluation_metrics(bug_eval: Dict, suggestion_eval: Dict) -> str:
    """Format evaluation metrics for display"""
    output = ["## πŸ“Š Analysis Quality Metrics"]
    output.append("")
    
    # Bug retrieval metrics
    output.append("### πŸ” Retrieval Relevance")
    output.append(f"- **Average Similarity Score:** {bug_eval['average_similarity']:.3f}/1.0")
    output.append(f"- **Semantic Relevance:** {bug_eval['relevance_score']:.3f}/1.0")
    output.append(f"- **Results Retrieved:** {bug_eval['result_count']}")
    
    # Suggestion quality metrics
    output.append("")
    output.append("### πŸ› οΈ Suggestion Quality")
    output.append(f"- **Completeness:** {suggestion_eval['completeness_score']:.3f}/1.0")
    output.append(f"- **Specificity:** {suggestion_eval['specificity_score']:.3f}/1.0")
    output.append(f"- **Actionability:** {suggestion_eval['actionability_score']:.3f}/1.0")
    output.append(f"- **Overall Usefulness:** {suggestion_eval['overall_usefulness']:.3f}/1.0")
    
    # Quality assessment
    overall_quality = (bug_eval['relevance_score'] + suggestion_eval['overall_usefulness']) / 2
    output.append("")
    output.append("### ⭐ Overall Analysis Quality")
    
    if overall_quality >= 0.8:
        quality_label = "🟒 Excellent"
    elif overall_quality >= 0.6:
        quality_label = "🟑 Good"
    elif overall_quality >= 0.4:
        quality_label = "🟠 Fair"
    else:
        quality_label = "πŸ”΄ Poor"
    
    output.append(f"**Quality Rating:** {quality_label} ({overall_quality:.3f}/1.0)")
    
    return "\n".join(output)

# Create Gradio interface
def create_interface():
    """Create the Gradio interface for the Bug Report Analysis Agent"""
    
    with gr.Blocks(
        title="🐞 Bug Report Analysis Agent",
        theme=gr.themes.Soft(),
        css="""
        .gradio-container {
            max-width: 1200px !important;
        }
        .tab-nav {
            font-weight: bold;
        }
        """
    ) as demo:
        
        gr.Markdown("""
        # 🐞 Bug Report Analysis Agent
        
        **Advanced RAG-powered system for intelligent bug analysis**
        
        This system analyzes bug reports using Retrieval-Augmented Generation (RAG) to:
        - πŸ” Find similar past issues in the bug database
        - πŸ’» Identify relevant code sections that might be related
        - πŸ› οΈ Suggest potential causes and fixes
        - πŸ“Š Evaluate retrieval relevance and suggestion usefulness
        
        ---
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                input_box = gr.Textbox(
                    lines=6,
                    label="πŸ” Bug Description",
                    placeholder="Describe the bug you're experiencing...\n\nExample: 'Login form redirects back to login page after entering correct credentials'",
                    info="Provide as much detail as possible for better analysis"
                )
                
                with gr.Row():
                    analyze_btn = gr.Button("πŸ” Analyze Bug", variant="primary", size="lg")
                    clear_btn = gr.Button("πŸ—‘οΈ Clear", variant="secondary")
        
        with gr.Row():
            with gr.Column(scale=1):
                similar_bugs_output = gr.Markdown(
                    label="πŸͺ² Similar Bug Reports",
                    value="Enter a bug description and click 'Analyze Bug' to see similar issues..."
                )
            
            with gr.Column(scale=1):
                relevant_code_output = gr.Markdown(
                    label="πŸ’» Relevant Code Sections", 
                    value="Code analysis will appear here..."
                )
        
        with gr.Row():
            with gr.Column(scale=1):
                suggestions_output = gr.Markdown(
                    label="πŸ› οΈ Fix Suggestions",
                    value="Intelligent fix suggestions will be generated here..."
                )
            
            with gr.Column(scale=1):
                evaluation_output = gr.Markdown(
                    label="πŸ“Š Quality Metrics",
                    value="Analysis quality metrics will be shown here..."
                )
        
        # Event handlers
        analyze_btn.click(
            fn=analyze_bug_report,
            inputs=[input_box],
            outputs=[similar_bugs_output, relevant_code_output, suggestions_output, evaluation_output],
            api_name="analyze_bug"
        )
        
        clear_btn.click(
            fn=lambda: ("", "Enter a bug description and click 'Analyze Bug' to see similar issues...", 
                       "Code analysis will appear here...", 
                       "Intelligent fix suggestions will be generated here...",
                       "Analysis quality metrics will be shown here..."),
            inputs=[],
            outputs=[input_box, similar_bugs_output, relevant_code_output, suggestions_output, evaluation_output]
        )
        
        # Footer
        gr.Markdown("""
        ---
        **πŸš€ Built with:** LangChain β€’ Sentence Transformers β€’ FAISS β€’ Gradio
        
        **πŸ“ˆ Features:** Semantic Search β€’ Similarity Scoring β€’ Code Analysis β€’ Fix Suggestions β€’ Quality Evaluation
        """)
    
    return demo

if __name__ == "__main__":
    # Create and launch the interface
    demo = create_interface()
    demo.launch(
        share=True,
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True
    )