File size: 19,305 Bytes
83d51a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
#!/usr/bin/env python3
"""
Bug Report Analysis Agent - Comprehensive Evaluation Script
============================================================
This script demonstrates and evaluates the RAG system's performance
on various types of bug reports and provides detailed analysis.
"""
import sys
import time
import json
from typing import Dict, List, Tuple
import pandas as pd
# Import the main system components
from app import (
rag_system, evaluator, suggestion_engine,
analyze_bug_report, format_similar_bugs,
format_relevant_code, format_evaluation_metrics
)
class SystemEvaluator:
"""Comprehensive evaluation of the Bug Report Analysis system"""
def __init__(self):
self.test_queries = [
{
"query": "Login form redirects back to login page after entering correct credentials",
"category": "Authentication",
"expected_components": ["login", "auth", "session"],
"description": "Classic authentication redirect issue"
},
{
"query": "Database connection times out during high traffic periods",
"category": "Database",
"expected_components": ["database", "connection", "timeout"],
"description": "Performance issue under load"
},
{
"query": "Email notifications for password reset are not being sent to users",
"category": "Email",
"expected_components": ["email", "smtp", "password"],
"description": "Email service functionality problem"
},
{
"query": "Submit button on contact form doesn't respond when clicked",
"category": "UI/Frontend",
"expected_components": ["button", "form", "javascript"],
"description": "Frontend interaction issue"
},
{
"query": "API returns 500 internal server error for user profile updates",
"category": "API",
"expected_components": ["api", "profile", "server"],
"description": "Backend API error"
},
{
"query": "Memory usage increases continuously when uploading large files",
"category": "Performance",
"expected_components": ["memory", "upload", "file"],
"description": "Memory leak in file handling"
},
{
"query": "Dashboard charts show incorrect data for monthly revenue reports",
"category": "Data/Analytics",
"expected_components": ["dashboard", "chart", "data"],
"description": "Data visualization accuracy issue"
},
{
"query": "User session expires too quickly causing frequent re-authentication",
"category": "Session Management",
"expected_components": ["session", "timeout", "authentication"],
"description": "Session timeout configuration issue"
}
]
def run_comprehensive_evaluation(self) -> Dict:
"""Run comprehensive evaluation of the system"""
print("๐ Starting Comprehensive Bug Report Analysis Evaluation")
print("=" * 70)
start_time = time.time()
results = {
"test_results": [],
"performance_metrics": {},
"quality_analysis": {},
"component_coverage": {},
"recommendations": []
}
# Test each query
for i, test_case in enumerate(self.test_queries, 1):
print(f"\n๐ Test Case {i}/{len(self.test_queries)}: {test_case['category']}")
print(f"Query: {test_case['query']}")
print("-" * 50)
# Run analysis
test_result = self.evaluate_single_query(test_case)
results["test_results"].append(test_result)
# Print summary
self.print_test_summary(test_result)
time.sleep(0.5) # Brief pause between tests
# Calculate overall metrics
results["performance_metrics"] = self.calculate_performance_metrics(results["test_results"])
results["quality_analysis"] = self.analyze_quality_patterns(results["test_results"])
results["component_coverage"] = self.analyze_component_coverage(results["test_results"])
results["recommendations"] = self.generate_recommendations(results)
total_time = time.time() - start_time
results["evaluation_time"] = total_time
# Print final report
self.print_final_report(results)
return results
def evaluate_single_query(self, test_case: Dict) -> Dict:
"""Evaluate a single test query"""
query = test_case["query"]
start_time = time.time()
# Run the analysis
try:
similar_bugs_output, relevant_code_output, suggestions, evaluation_output = analyze_bug_report(query)
# Get raw data for analysis
similar_bugs = rag_system.search_similar_bugs(query, k=5)
relevant_code = rag_system.search_relevant_code(query, k=5)
# Evaluate results
bug_evaluation = evaluator.evaluate_retrieval_relevance(query, similar_bugs)
suggestion_evaluation = evaluator.evaluate_suggestion_usefulness(query, suggestions)
processing_time = time.time() - start_time
return {
"test_case": test_case,
"processing_time": processing_time,
"similar_bugs": similar_bugs,
"relevant_code": relevant_code,
"suggestions": suggestions,
"bug_evaluation": bug_evaluation,
"suggestion_evaluation": suggestion_evaluation,
"outputs": {
"similar_bugs_output": similar_bugs_output,
"relevant_code_output": relevant_code_output,
"evaluation_output": evaluation_output
},
"success": True
}
except Exception as e:
return {
"test_case": test_case,
"processing_time": time.time() - start_time,
"error": str(e),
"success": False
}
def print_test_summary(self, result: Dict):
"""Print summary for a single test"""
if not result["success"]:
print(f"โ Error: {result['error']}")
return
bug_eval = result["bug_evaluation"]
suggestion_eval = result["suggestion_evaluation"]
print(f"โฑ๏ธ Processing Time: {result['processing_time']:.2f}s")
print(f"๐ Similar Bugs Found: {bug_eval['result_count']}")
print(f"๐ Retrieval Relevance: {bug_eval['relevance_score']:.3f}/1.0")
print(f"๐ ๏ธ Suggestion Quality: {suggestion_eval['overall_usefulness']:.3f}/1.0")
# Quality indicator
overall_quality = (bug_eval['relevance_score'] + suggestion_eval['overall_usefulness']) / 2
if overall_quality >= 0.8:
quality_icon = "๐ข"
elif overall_quality >= 0.6:
quality_icon = "๐ก"
elif overall_quality >= 0.4:
quality_icon = "๐ "
else:
quality_icon = "๐ด"
print(f"{quality_icon} Overall Quality: {overall_quality:.3f}/1.0")
def calculate_performance_metrics(self, test_results: List[Dict]) -> Dict:
"""Calculate overall performance metrics"""
successful_tests = [r for r in test_results if r["success"]]
if not successful_tests:
return {"error": "No successful tests to analyze"}
processing_times = [r["processing_time"] for r in successful_tests]
retrieval_scores = [r["bug_evaluation"]["relevance_score"] for r in successful_tests]
suggestion_scores = [r["suggestion_evaluation"]["overall_usefulness"] for r in successful_tests]
bug_counts = [r["bug_evaluation"]["result_count"] for r in successful_tests]
return {
"total_tests": len(test_results),
"successful_tests": len(successful_tests),
"success_rate": len(successful_tests) / len(test_results),
"average_processing_time": sum(processing_times) / len(processing_times),
"min_processing_time": min(processing_times),
"max_processing_time": max(processing_times),
"average_retrieval_score": sum(retrieval_scores) / len(retrieval_scores),
"average_suggestion_score": sum(suggestion_scores) / len(suggestion_scores),
"average_bugs_found": sum(bug_counts) / len(bug_counts),
"retrieval_score_std": pd.Series(retrieval_scores).std(),
"suggestion_score_std": pd.Series(suggestion_scores).std()
}
def analyze_quality_patterns(self, test_results: List[Dict]) -> Dict:
"""Analyze quality patterns across different categories"""
successful_tests = [r for r in test_results if r["success"]]
category_analysis = {}
for result in successful_tests:
category = result["test_case"]["category"]
if category not in category_analysis:
category_analysis[category] = {
"count": 0,
"retrieval_scores": [],
"suggestion_scores": [],
"processing_times": []
}
category_analysis[category]["count"] += 1
category_analysis[category]["retrieval_scores"].append(
result["bug_evaluation"]["relevance_score"]
)
category_analysis[category]["suggestion_scores"].append(
result["suggestion_evaluation"]["overall_usefulness"]
)
category_analysis[category]["processing_times"].append(
result["processing_time"]
)
# Calculate averages for each category
for category, data in category_analysis.items():
data["avg_retrieval"] = sum(data["retrieval_scores"]) / len(data["retrieval_scores"])
data["avg_suggestion"] = sum(data["suggestion_scores"]) / len(data["suggestion_scores"])
data["avg_processing_time"] = sum(data["processing_times"]) / len(data["processing_times"])
return category_analysis
def analyze_component_coverage(self, test_results: List[Dict]) -> Dict:
"""Analyze how well the system covers different components"""
component_coverage = {}
for result in test_results:
if not result["success"]:
continue
test_case = result["test_case"]
expected_components = test_case.get("expected_components", [])
# Check if similar bugs contain expected components
similar_bugs = result["similar_bugs"]
found_components = set()
for bug in similar_bugs:
component = bug.get("component", "").lower()
description = bug.get("description", "").lower()
title = bug.get("title", "").lower()
for expected in expected_components:
if expected.lower() in f"{component} {description} {title}":
found_components.add(expected)
component_coverage[test_case["category"]] = {
"expected": expected_components,
"found": list(found_components),
"coverage_ratio": len(found_components) / len(expected_components) if expected_components else 0
}
return component_coverage
def generate_recommendations(self, results: Dict) -> List[str]:
"""Generate recommendations based on evaluation results"""
recommendations = []
performance = results["performance_metrics"]
quality = results["quality_analysis"]
# Performance recommendations
if performance.get("average_processing_time", 0) > 3.0:
recommendations.append("Consider optimizing query processing time (currently > 3s average)")
if performance.get("success_rate", 1.0) < 0.95:
recommendations.append("Improve error handling and system reliability")
# Quality recommendations
avg_retrieval = performance.get("average_retrieval_score", 0)
avg_suggestion = performance.get("average_suggestion_score", 0)
if avg_retrieval < 0.7:
recommendations.append("Improve bug retrieval relevance (add more diverse training data)")
if avg_suggestion < 0.7:
recommendations.append("Enhance suggestion generation quality (refine fix templates)")
# Category-specific recommendations
for category, data in quality.items():
if data["avg_retrieval"] < 0.6:
recommendations.append(f"Improve {category} category retrieval performance")
if data["avg_suggestion"] < 0.6:
recommendations.append(f"Enhance {category} category suggestion quality")
if not recommendations:
recommendations.append("System performance is excellent across all metrics!")
return recommendations
def print_final_report(self, results: Dict):
"""Print comprehensive final evaluation report"""
print("\n" + "=" * 70)
print("๐ COMPREHENSIVE EVALUATION REPORT")
print("=" * 70)
# Performance Summary
perf = results["performance_metrics"]
print(f"\n๐ PERFORMANCE SUMMARY")
print(f"{'Total Tests:':<25} {perf['total_tests']}")
print(f"{'Success Rate:':<25} {perf['success_rate']:.1%}")
print(f"{'Avg Processing Time:':<25} {perf['average_processing_time']:.2f}s")
print(f"{'Avg Retrieval Score:':<25} {perf['average_retrieval_score']:.3f}/1.0")
print(f"{'Avg Suggestion Score:':<25} {perf['average_suggestion_score']:.3f}/1.0")
print(f"{'Avg Bugs Found:':<25} {perf['average_bugs_found']:.1f}")
# Quality Analysis by Category
print(f"\n๐ QUALITY ANALYSIS BY CATEGORY")
quality = results["quality_analysis"]
for category, data in quality.items():
print(f"\n{category}:")
print(f" Retrieval: {data['avg_retrieval']:.3f} | Suggestions: {data['avg_suggestion']:.3f}")
# Component Coverage
print(f"\n๐ฏ COMPONENT COVERAGE ANALYSIS")
coverage = results["component_coverage"]
for category, data in coverage.items():
coverage_pct = data['coverage_ratio'] * 100
print(f"{category}: {coverage_pct:.0f}% coverage ({len(data['found'])}/{len(data['expected'])} components)")
# Recommendations
print(f"\n๐ก RECOMMENDATIONS")
for i, rec in enumerate(results["recommendations"], 1):
print(f"{i}. {rec}")
# Overall Rating
overall_score = (perf['average_retrieval_score'] + perf['average_suggestion_score']) / 2
if overall_score >= 0.8:
rating = "๐ข EXCELLENT"
elif overall_score >= 0.7:
rating = "๐ก GOOD"
elif overall_score >= 0.6:
rating = "๐ FAIR"
else:
rating = "๐ด NEEDS IMPROVEMENT"
print(f"\nโญ OVERALL SYSTEM RATING: {rating} ({overall_score:.3f}/1.0)")
print(f"๐
Evaluation completed in {results['evaluation_time']:.1f} seconds")
print("=" * 70)
def save_results(self, results: Dict, filename: str = "evaluation_results.json"):
"""Save evaluation results to file"""
try:
# Convert numpy types to native Python types for JSON serialization
def convert_types(obj):
if hasattr(obj, 'item'): # numpy scalar
return obj.item()
elif isinstance(obj, dict):
return {k: convert_types(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [convert_types(item) for item in obj]
else:
return obj
serializable_results = convert_types(results)
with open(filename, 'w') as f:
json.dump(serializable_results, f, indent=2, default=str)
print(f"๐ Results saved to {filename}")
except Exception as e:
print(f"โ Error saving results: {e}")
def run_interactive_demo():
"""Run an interactive demonstration of the system"""
print("๐ฎ Interactive Bug Report Analysis Demo")
print("Enter bug descriptions to see real-time analysis")
print("Type 'quit' to exit\n")
while True:
try:
query = input("๐ Describe a bug: ").strip()
if query.lower() in ['quit', 'exit', 'q']:
print("๐ Thanks for trying the Bug Report Analysis Agent!")
break
if not query:
continue
print("\n๐ Analyzing...")
start_time = time.time()
similar_bugs_output, relevant_code_output, suggestions, evaluation_output = analyze_bug_report(query)
processing_time = time.time() - start_time
print(f"โฑ๏ธ Analysis completed in {processing_time:.2f} seconds\n")
print("๐ RESULTS:")
print("-" * 50)
print(similar_bugs_output[:500] + "..." if len(similar_bugs_output) > 500 else similar_bugs_output)
print("\n" + evaluation_output)
print("\n" + "="*50 + "\n")
except KeyboardInterrupt:
print("\n๐ Goodbye!")
break
except Exception as e:
print(f"โ Error: {e}")
if __name__ == "__main__":
evaluator_instance = SystemEvaluator()
if len(sys.argv) > 1 and sys.argv[1] == "--demo":
run_interactive_demo()
else:
# Run comprehensive evaluation
results = evaluator_instance.run_comprehensive_evaluation()
evaluator_instance.save_results(results)
print("\n๐ฏ To run interactive demo: python evaluate_system.py --demo") |