File size: 19,305 Bytes
83d51a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
#!/usr/bin/env python3
"""

Bug Report Analysis Agent - Comprehensive Evaluation Script

============================================================

This script demonstrates and evaluates the RAG system's performance

on various types of bug reports and provides detailed analysis.

"""

import sys
import time
import json
from typing import Dict, List, Tuple
import pandas as pd

# Import the main system components
from app import (
    rag_system, evaluator, suggestion_engine,
    analyze_bug_report, format_similar_bugs, 
    format_relevant_code, format_evaluation_metrics
)

class SystemEvaluator:
    """Comprehensive evaluation of the Bug Report Analysis system"""
    
    def __init__(self):
        self.test_queries = [
            {
                "query": "Login form redirects back to login page after entering correct credentials",
                "category": "Authentication",
                "expected_components": ["login", "auth", "session"],
                "description": "Classic authentication redirect issue"
            },
            {
                "query": "Database connection times out during high traffic periods",
                "category": "Database",
                "expected_components": ["database", "connection", "timeout"],
                "description": "Performance issue under load"
            },
            {
                "query": "Email notifications for password reset are not being sent to users",
                "category": "Email",
                "expected_components": ["email", "smtp", "password"],
                "description": "Email service functionality problem"
            },
            {
                "query": "Submit button on contact form doesn't respond when clicked",
                "category": "UI/Frontend",
                "expected_components": ["button", "form", "javascript"],
                "description": "Frontend interaction issue"
            },
            {
                "query": "API returns 500 internal server error for user profile updates",
                "category": "API",
                "expected_components": ["api", "profile", "server"],
                "description": "Backend API error"
            },
            {
                "query": "Memory usage increases continuously when uploading large files",
                "category": "Performance",
                "expected_components": ["memory", "upload", "file"],
                "description": "Memory leak in file handling"
            },
            {
                "query": "Dashboard charts show incorrect data for monthly revenue reports",
                "category": "Data/Analytics",
                "expected_components": ["dashboard", "chart", "data"],
                "description": "Data visualization accuracy issue"
            },
            {
                "query": "User session expires too quickly causing frequent re-authentication",
                "category": "Session Management",
                "expected_components": ["session", "timeout", "authentication"],
                "description": "Session timeout configuration issue"
            }
        ]
    
    def run_comprehensive_evaluation(self) -> Dict:
        """Run comprehensive evaluation of the system"""
        print("๐Ÿš€ Starting Comprehensive Bug Report Analysis Evaluation")
        print("=" * 70)
        
        start_time = time.time()
        results = {
            "test_results": [],
            "performance_metrics": {},
            "quality_analysis": {},
            "component_coverage": {},
            "recommendations": []
        }
        
        # Test each query
        for i, test_case in enumerate(self.test_queries, 1):
            print(f"\n๐Ÿ“‹ Test Case {i}/{len(self.test_queries)}: {test_case['category']}")
            print(f"Query: {test_case['query']}")
            print("-" * 50)
            
            # Run analysis
            test_result = self.evaluate_single_query(test_case)
            results["test_results"].append(test_result)
            
            # Print summary
            self.print_test_summary(test_result)
            
            time.sleep(0.5)  # Brief pause between tests
        
        # Calculate overall metrics
        results["performance_metrics"] = self.calculate_performance_metrics(results["test_results"])
        results["quality_analysis"] = self.analyze_quality_patterns(results["test_results"])
        results["component_coverage"] = self.analyze_component_coverage(results["test_results"])
        results["recommendations"] = self.generate_recommendations(results)
        
        total_time = time.time() - start_time
        results["evaluation_time"] = total_time
        
        # Print final report
        self.print_final_report(results)
        
        return results
    
    def evaluate_single_query(self, test_case: Dict) -> Dict:
        """Evaluate a single test query"""
        query = test_case["query"]
        start_time = time.time()
        
        # Run the analysis
        try:
            similar_bugs_output, relevant_code_output, suggestions, evaluation_output = analyze_bug_report(query)
            
            # Get raw data for analysis
            similar_bugs = rag_system.search_similar_bugs(query, k=5)
            relevant_code = rag_system.search_relevant_code(query, k=5)
            
            # Evaluate results
            bug_evaluation = evaluator.evaluate_retrieval_relevance(query, similar_bugs)
            suggestion_evaluation = evaluator.evaluate_suggestion_usefulness(query, suggestions)
            
            processing_time = time.time() - start_time
            
            return {
                "test_case": test_case,
                "processing_time": processing_time,
                "similar_bugs": similar_bugs,
                "relevant_code": relevant_code,
                "suggestions": suggestions,
                "bug_evaluation": bug_evaluation,
                "suggestion_evaluation": suggestion_evaluation,
                "outputs": {
                    "similar_bugs_output": similar_bugs_output,
                    "relevant_code_output": relevant_code_output,
                    "evaluation_output": evaluation_output
                },
                "success": True
            }
            
        except Exception as e:
            return {
                "test_case": test_case,
                "processing_time": time.time() - start_time,
                "error": str(e),
                "success": False
            }
    
    def print_test_summary(self, result: Dict):
        """Print summary for a single test"""
        if not result["success"]:
            print(f"โŒ Error: {result['error']}")
            return
        
        bug_eval = result["bug_evaluation"]
        suggestion_eval = result["suggestion_evaluation"]
        
        print(f"โฑ๏ธ  Processing Time: {result['processing_time']:.2f}s")
        print(f"๐Ÿ” Similar Bugs Found: {bug_eval['result_count']}")
        print(f"๐Ÿ“Š Retrieval Relevance: {bug_eval['relevance_score']:.3f}/1.0")
        print(f"๐Ÿ› ๏ธ  Suggestion Quality: {suggestion_eval['overall_usefulness']:.3f}/1.0")
        
        # Quality indicator
        overall_quality = (bug_eval['relevance_score'] + suggestion_eval['overall_usefulness']) / 2
        if overall_quality >= 0.8:
            quality_icon = "๐ŸŸข"
        elif overall_quality >= 0.6:
            quality_icon = "๐ŸŸก"
        elif overall_quality >= 0.4:
            quality_icon = "๐ŸŸ "
        else:
            quality_icon = "๐Ÿ”ด"
        
        print(f"{quality_icon} Overall Quality: {overall_quality:.3f}/1.0")
    
    def calculate_performance_metrics(self, test_results: List[Dict]) -> Dict:
        """Calculate overall performance metrics"""
        successful_tests = [r for r in test_results if r["success"]]
        
        if not successful_tests:
            return {"error": "No successful tests to analyze"}
        
        processing_times = [r["processing_time"] for r in successful_tests]
        retrieval_scores = [r["bug_evaluation"]["relevance_score"] for r in successful_tests]
        suggestion_scores = [r["suggestion_evaluation"]["overall_usefulness"] for r in successful_tests]
        bug_counts = [r["bug_evaluation"]["result_count"] for r in successful_tests]
        
        return {
            "total_tests": len(test_results),
            "successful_tests": len(successful_tests),
            "success_rate": len(successful_tests) / len(test_results),
            "average_processing_time": sum(processing_times) / len(processing_times),
            "min_processing_time": min(processing_times),
            "max_processing_time": max(processing_times),
            "average_retrieval_score": sum(retrieval_scores) / len(retrieval_scores),
            "average_suggestion_score": sum(suggestion_scores) / len(suggestion_scores),
            "average_bugs_found": sum(bug_counts) / len(bug_counts),
            "retrieval_score_std": pd.Series(retrieval_scores).std(),
            "suggestion_score_std": pd.Series(suggestion_scores).std()
        }
    
    def analyze_quality_patterns(self, test_results: List[Dict]) -> Dict:
        """Analyze quality patterns across different categories"""
        successful_tests = [r for r in test_results if r["success"]]
        
        category_analysis = {}
        for result in successful_tests:
            category = result["test_case"]["category"]
            
            if category not in category_analysis:
                category_analysis[category] = {
                    "count": 0,
                    "retrieval_scores": [],
                    "suggestion_scores": [],
                    "processing_times": []
                }
            
            category_analysis[category]["count"] += 1
            category_analysis[category]["retrieval_scores"].append(
                result["bug_evaluation"]["relevance_score"]
            )
            category_analysis[category]["suggestion_scores"].append(
                result["suggestion_evaluation"]["overall_usefulness"]
            )
            category_analysis[category]["processing_times"].append(
                result["processing_time"]
            )
        
        # Calculate averages for each category
        for category, data in category_analysis.items():
            data["avg_retrieval"] = sum(data["retrieval_scores"]) / len(data["retrieval_scores"])
            data["avg_suggestion"] = sum(data["suggestion_scores"]) / len(data["suggestion_scores"])
            data["avg_processing_time"] = sum(data["processing_times"]) / len(data["processing_times"])
        
        return category_analysis
    
    def analyze_component_coverage(self, test_results: List[Dict]) -> Dict:
        """Analyze how well the system covers different components"""
        component_coverage = {}
        
        for result in test_results:
            if not result["success"]:
                continue
            
            test_case = result["test_case"]
            expected_components = test_case.get("expected_components", [])
            
            # Check if similar bugs contain expected components
            similar_bugs = result["similar_bugs"]
            found_components = set()
            
            for bug in similar_bugs:
                component = bug.get("component", "").lower()
                description = bug.get("description", "").lower()
                title = bug.get("title", "").lower()
                
                for expected in expected_components:
                    if expected.lower() in f"{component} {description} {title}":
                        found_components.add(expected)
            
            component_coverage[test_case["category"]] = {
                "expected": expected_components,
                "found": list(found_components),
                "coverage_ratio": len(found_components) / len(expected_components) if expected_components else 0
            }
        
        return component_coverage
    
    def generate_recommendations(self, results: Dict) -> List[str]:
        """Generate recommendations based on evaluation results"""
        recommendations = []
        performance = results["performance_metrics"]
        quality = results["quality_analysis"]
        
        # Performance recommendations
        if performance.get("average_processing_time", 0) > 3.0:
            recommendations.append("Consider optimizing query processing time (currently > 3s average)")
        
        if performance.get("success_rate", 1.0) < 0.95:
            recommendations.append("Improve error handling and system reliability")
        
        # Quality recommendations
        avg_retrieval = performance.get("average_retrieval_score", 0)
        avg_suggestion = performance.get("average_suggestion_score", 0)
        
        if avg_retrieval < 0.7:
            recommendations.append("Improve bug retrieval relevance (add more diverse training data)")
        
        if avg_suggestion < 0.7:
            recommendations.append("Enhance suggestion generation quality (refine fix templates)")
        
        # Category-specific recommendations
        for category, data in quality.items():
            if data["avg_retrieval"] < 0.6:
                recommendations.append(f"Improve {category} category retrieval performance")
            
            if data["avg_suggestion"] < 0.6:
                recommendations.append(f"Enhance {category} category suggestion quality")
        
        if not recommendations:
            recommendations.append("System performance is excellent across all metrics!")
        
        return recommendations
    
    def print_final_report(self, results: Dict):
        """Print comprehensive final evaluation report"""
        print("\n" + "=" * 70)
        print("๐Ÿ“Š COMPREHENSIVE EVALUATION REPORT")
        print("=" * 70)
        
        # Performance Summary
        perf = results["performance_metrics"]
        print(f"\n๐Ÿš€ PERFORMANCE SUMMARY")
        print(f"{'Total Tests:':<25} {perf['total_tests']}")
        print(f"{'Success Rate:':<25} {perf['success_rate']:.1%}")
        print(f"{'Avg Processing Time:':<25} {perf['average_processing_time']:.2f}s")
        print(f"{'Avg Retrieval Score:':<25} {perf['average_retrieval_score']:.3f}/1.0")
        print(f"{'Avg Suggestion Score:':<25} {perf['average_suggestion_score']:.3f}/1.0")
        print(f"{'Avg Bugs Found:':<25} {perf['average_bugs_found']:.1f}")
        
        # Quality Analysis by Category
        print(f"\n๐Ÿ“ˆ QUALITY ANALYSIS BY CATEGORY")
        quality = results["quality_analysis"]
        for category, data in quality.items():
            print(f"\n{category}:")
            print(f"  Retrieval: {data['avg_retrieval']:.3f} | Suggestions: {data['avg_suggestion']:.3f}")
        
        # Component Coverage
        print(f"\n๐ŸŽฏ COMPONENT COVERAGE ANALYSIS")
        coverage = results["component_coverage"]
        for category, data in coverage.items():
            coverage_pct = data['coverage_ratio'] * 100
            print(f"{category}: {coverage_pct:.0f}% coverage ({len(data['found'])}/{len(data['expected'])} components)")
        
        # Recommendations
        print(f"\n๐Ÿ’ก RECOMMENDATIONS")
        for i, rec in enumerate(results["recommendations"], 1):
            print(f"{i}. {rec}")
        
        # Overall Rating
        overall_score = (perf['average_retrieval_score'] + perf['average_suggestion_score']) / 2
        if overall_score >= 0.8:
            rating = "๐ŸŸข EXCELLENT"
        elif overall_score >= 0.7:
            rating = "๐ŸŸก GOOD"
        elif overall_score >= 0.6:
            rating = "๐ŸŸ  FAIR"
        else:
            rating = "๐Ÿ”ด NEEDS IMPROVEMENT"
        
        print(f"\nโญ OVERALL SYSTEM RATING: {rating} ({overall_score:.3f}/1.0)")
        print(f"๐Ÿ“… Evaluation completed in {results['evaluation_time']:.1f} seconds")
        print("=" * 70)
    
    def save_results(self, results: Dict, filename: str = "evaluation_results.json"):
        """Save evaluation results to file"""
        try:
            # Convert numpy types to native Python types for JSON serialization
            def convert_types(obj):
                if hasattr(obj, 'item'):  # numpy scalar
                    return obj.item()
                elif isinstance(obj, dict):
                    return {k: convert_types(v) for k, v in obj.items()}
                elif isinstance(obj, list):
                    return [convert_types(item) for item in obj]
                else:
                    return obj
            
            serializable_results = convert_types(results)
            
            with open(filename, 'w') as f:
                json.dump(serializable_results, f, indent=2, default=str)
            
            print(f"๐Ÿ“ Results saved to {filename}")
            
        except Exception as e:
            print(f"โŒ Error saving results: {e}")

def run_interactive_demo():
    """Run an interactive demonstration of the system"""
    print("๐ŸŽฎ Interactive Bug Report Analysis Demo")
    print("Enter bug descriptions to see real-time analysis")
    print("Type 'quit' to exit\n")
    
    while True:
        try:
            query = input("๐Ÿž Describe a bug: ").strip()
            
            if query.lower() in ['quit', 'exit', 'q']:
                print("๐Ÿ‘‹ Thanks for trying the Bug Report Analysis Agent!")
                break
            
            if not query:
                continue
            
            print("\n๐Ÿ” Analyzing...")
            start_time = time.time()
            
            similar_bugs_output, relevant_code_output, suggestions, evaluation_output = analyze_bug_report(query)
            
            processing_time = time.time() - start_time
            
            print(f"โฑ๏ธ Analysis completed in {processing_time:.2f} seconds\n")
            print("๐Ÿ“‹ RESULTS:")
            print("-" * 50)
            print(similar_bugs_output[:500] + "..." if len(similar_bugs_output) > 500 else similar_bugs_output)
            print("\n" + evaluation_output)
            print("\n" + "="*50 + "\n")
            
        except KeyboardInterrupt:
            print("\n๐Ÿ‘‹ Goodbye!")
            break
        except Exception as e:
            print(f"โŒ Error: {e}")

if __name__ == "__main__":
    evaluator_instance = SystemEvaluator()
    
    if len(sys.argv) > 1 and sys.argv[1] == "--demo":
        run_interactive_demo()
    else:
        # Run comprehensive evaluation
        results = evaluator_instance.run_comprehensive_evaluation()
        evaluator_instance.save_results(results)
        
        print("\n๐ŸŽฏ To run interactive demo: python evaluate_system.py --demo")