#!/usr/bin/env python3 """ Bug Report Analysis Agent - Comprehensive Evaluation Script ============================================================ This script demonstrates and evaluates the RAG system's performance on various types of bug reports and provides detailed analysis. """ import sys import time import json from typing import Dict, List, Tuple import pandas as pd # Import the main system components from app import ( rag_system, evaluator, suggestion_engine, analyze_bug_report, format_similar_bugs, format_relevant_code, format_evaluation_metrics ) class SystemEvaluator: """Comprehensive evaluation of the Bug Report Analysis system""" def __init__(self): self.test_queries = [ { "query": "Login form redirects back to login page after entering correct credentials", "category": "Authentication", "expected_components": ["login", "auth", "session"], "description": "Classic authentication redirect issue" }, { "query": "Database connection times out during high traffic periods", "category": "Database", "expected_components": ["database", "connection", "timeout"], "description": "Performance issue under load" }, { "query": "Email notifications for password reset are not being sent to users", "category": "Email", "expected_components": ["email", "smtp", "password"], "description": "Email service functionality problem" }, { "query": "Submit button on contact form doesn't respond when clicked", "category": "UI/Frontend", "expected_components": ["button", "form", "javascript"], "description": "Frontend interaction issue" }, { "query": "API returns 500 internal server error for user profile updates", "category": "API", "expected_components": ["api", "profile", "server"], "description": "Backend API error" }, { "query": "Memory usage increases continuously when uploading large files", "category": "Performance", "expected_components": ["memory", "upload", "file"], "description": "Memory leak in file handling" }, { "query": "Dashboard charts show incorrect data for monthly revenue reports", "category": "Data/Analytics", "expected_components": ["dashboard", "chart", "data"], "description": "Data visualization accuracy issue" }, { "query": "User session expires too quickly causing frequent re-authentication", "category": "Session Management", "expected_components": ["session", "timeout", "authentication"], "description": "Session timeout configuration issue" } ] def run_comprehensive_evaluation(self) -> Dict: """Run comprehensive evaluation of the system""" print("šŸš€ Starting Comprehensive Bug Report Analysis Evaluation") print("=" * 70) start_time = time.time() results = { "test_results": [], "performance_metrics": {}, "quality_analysis": {}, "component_coverage": {}, "recommendations": [] } # Test each query for i, test_case in enumerate(self.test_queries, 1): print(f"\nšŸ“‹ Test Case {i}/{len(self.test_queries)}: {test_case['category']}") print(f"Query: {test_case['query']}") print("-" * 50) # Run analysis test_result = self.evaluate_single_query(test_case) results["test_results"].append(test_result) # Print summary self.print_test_summary(test_result) time.sleep(0.5) # Brief pause between tests # Calculate overall metrics results["performance_metrics"] = self.calculate_performance_metrics(results["test_results"]) results["quality_analysis"] = self.analyze_quality_patterns(results["test_results"]) results["component_coverage"] = self.analyze_component_coverage(results["test_results"]) results["recommendations"] = self.generate_recommendations(results) total_time = time.time() - start_time results["evaluation_time"] = total_time # Print final report self.print_final_report(results) return results def evaluate_single_query(self, test_case: Dict) -> Dict: """Evaluate a single test query""" query = test_case["query"] start_time = time.time() # Run the analysis try: similar_bugs_output, relevant_code_output, suggestions, evaluation_output = analyze_bug_report(query) # Get raw data for analysis similar_bugs = rag_system.search_similar_bugs(query, k=5) relevant_code = rag_system.search_relevant_code(query, k=5) # Evaluate results bug_evaluation = evaluator.evaluate_retrieval_relevance(query, similar_bugs) suggestion_evaluation = evaluator.evaluate_suggestion_usefulness(query, suggestions) processing_time = time.time() - start_time return { "test_case": test_case, "processing_time": processing_time, "similar_bugs": similar_bugs, "relevant_code": relevant_code, "suggestions": suggestions, "bug_evaluation": bug_evaluation, "suggestion_evaluation": suggestion_evaluation, "outputs": { "similar_bugs_output": similar_bugs_output, "relevant_code_output": relevant_code_output, "evaluation_output": evaluation_output }, "success": True } except Exception as e: return { "test_case": test_case, "processing_time": time.time() - start_time, "error": str(e), "success": False } def print_test_summary(self, result: Dict): """Print summary for a single test""" if not result["success"]: print(f"āŒ Error: {result['error']}") return bug_eval = result["bug_evaluation"] suggestion_eval = result["suggestion_evaluation"] print(f"ā±ļø Processing Time: {result['processing_time']:.2f}s") print(f"šŸ” Similar Bugs Found: {bug_eval['result_count']}") print(f"šŸ“Š Retrieval Relevance: {bug_eval['relevance_score']:.3f}/1.0") print(f"šŸ› ļø Suggestion Quality: {suggestion_eval['overall_usefulness']:.3f}/1.0") # Quality indicator overall_quality = (bug_eval['relevance_score'] + suggestion_eval['overall_usefulness']) / 2 if overall_quality >= 0.8: quality_icon = "🟢" elif overall_quality >= 0.6: quality_icon = "🟔" elif overall_quality >= 0.4: quality_icon = "🟠" else: quality_icon = "šŸ”“" print(f"{quality_icon} Overall Quality: {overall_quality:.3f}/1.0") def calculate_performance_metrics(self, test_results: List[Dict]) -> Dict: """Calculate overall performance metrics""" successful_tests = [r for r in test_results if r["success"]] if not successful_tests: return {"error": "No successful tests to analyze"} processing_times = [r["processing_time"] for r in successful_tests] retrieval_scores = [r["bug_evaluation"]["relevance_score"] for r in successful_tests] suggestion_scores = [r["suggestion_evaluation"]["overall_usefulness"] for r in successful_tests] bug_counts = [r["bug_evaluation"]["result_count"] for r in successful_tests] return { "total_tests": len(test_results), "successful_tests": len(successful_tests), "success_rate": len(successful_tests) / len(test_results), "average_processing_time": sum(processing_times) / len(processing_times), "min_processing_time": min(processing_times), "max_processing_time": max(processing_times), "average_retrieval_score": sum(retrieval_scores) / len(retrieval_scores), "average_suggestion_score": sum(suggestion_scores) / len(suggestion_scores), "average_bugs_found": sum(bug_counts) / len(bug_counts), "retrieval_score_std": pd.Series(retrieval_scores).std(), "suggestion_score_std": pd.Series(suggestion_scores).std() } def analyze_quality_patterns(self, test_results: List[Dict]) -> Dict: """Analyze quality patterns across different categories""" successful_tests = [r for r in test_results if r["success"]] category_analysis = {} for result in successful_tests: category = result["test_case"]["category"] if category not in category_analysis: category_analysis[category] = { "count": 0, "retrieval_scores": [], "suggestion_scores": [], "processing_times": [] } category_analysis[category]["count"] += 1 category_analysis[category]["retrieval_scores"].append( result["bug_evaluation"]["relevance_score"] ) category_analysis[category]["suggestion_scores"].append( result["suggestion_evaluation"]["overall_usefulness"] ) category_analysis[category]["processing_times"].append( result["processing_time"] ) # Calculate averages for each category for category, data in category_analysis.items(): data["avg_retrieval"] = sum(data["retrieval_scores"]) / len(data["retrieval_scores"]) data["avg_suggestion"] = sum(data["suggestion_scores"]) / len(data["suggestion_scores"]) data["avg_processing_time"] = sum(data["processing_times"]) / len(data["processing_times"]) return category_analysis def analyze_component_coverage(self, test_results: List[Dict]) -> Dict: """Analyze how well the system covers different components""" component_coverage = {} for result in test_results: if not result["success"]: continue test_case = result["test_case"] expected_components = test_case.get("expected_components", []) # Check if similar bugs contain expected components similar_bugs = result["similar_bugs"] found_components = set() for bug in similar_bugs: component = bug.get("component", "").lower() description = bug.get("description", "").lower() title = bug.get("title", "").lower() for expected in expected_components: if expected.lower() in f"{component} {description} {title}": found_components.add(expected) component_coverage[test_case["category"]] = { "expected": expected_components, "found": list(found_components), "coverage_ratio": len(found_components) / len(expected_components) if expected_components else 0 } return component_coverage def generate_recommendations(self, results: Dict) -> List[str]: """Generate recommendations based on evaluation results""" recommendations = [] performance = results["performance_metrics"] quality = results["quality_analysis"] # Performance recommendations if performance.get("average_processing_time", 0) > 3.0: recommendations.append("Consider optimizing query processing time (currently > 3s average)") if performance.get("success_rate", 1.0) < 0.95: recommendations.append("Improve error handling and system reliability") # Quality recommendations avg_retrieval = performance.get("average_retrieval_score", 0) avg_suggestion = performance.get("average_suggestion_score", 0) if avg_retrieval < 0.7: recommendations.append("Improve bug retrieval relevance (add more diverse training data)") if avg_suggestion < 0.7: recommendations.append("Enhance suggestion generation quality (refine fix templates)") # Category-specific recommendations for category, data in quality.items(): if data["avg_retrieval"] < 0.6: recommendations.append(f"Improve {category} category retrieval performance") if data["avg_suggestion"] < 0.6: recommendations.append(f"Enhance {category} category suggestion quality") if not recommendations: recommendations.append("System performance is excellent across all metrics!") return recommendations def print_final_report(self, results: Dict): """Print comprehensive final evaluation report""" print("\n" + "=" * 70) print("šŸ“Š COMPREHENSIVE EVALUATION REPORT") print("=" * 70) # Performance Summary perf = results["performance_metrics"] print(f"\nšŸš€ PERFORMANCE SUMMARY") print(f"{'Total Tests:':<25} {perf['total_tests']}") print(f"{'Success Rate:':<25} {perf['success_rate']:.1%}") print(f"{'Avg Processing Time:':<25} {perf['average_processing_time']:.2f}s") print(f"{'Avg Retrieval Score:':<25} {perf['average_retrieval_score']:.3f}/1.0") print(f"{'Avg Suggestion Score:':<25} {perf['average_suggestion_score']:.3f}/1.0") print(f"{'Avg Bugs Found:':<25} {perf['average_bugs_found']:.1f}") # Quality Analysis by Category print(f"\nšŸ“ˆ QUALITY ANALYSIS BY CATEGORY") quality = results["quality_analysis"] for category, data in quality.items(): print(f"\n{category}:") print(f" Retrieval: {data['avg_retrieval']:.3f} | Suggestions: {data['avg_suggestion']:.3f}") # Component Coverage print(f"\nšŸŽÆ COMPONENT COVERAGE ANALYSIS") coverage = results["component_coverage"] for category, data in coverage.items(): coverage_pct = data['coverage_ratio'] * 100 print(f"{category}: {coverage_pct:.0f}% coverage ({len(data['found'])}/{len(data['expected'])} components)") # Recommendations print(f"\nšŸ’” RECOMMENDATIONS") for i, rec in enumerate(results["recommendations"], 1): print(f"{i}. {rec}") # Overall Rating overall_score = (perf['average_retrieval_score'] + perf['average_suggestion_score']) / 2 if overall_score >= 0.8: rating = "🟢 EXCELLENT" elif overall_score >= 0.7: rating = "🟔 GOOD" elif overall_score >= 0.6: rating = "🟠 FAIR" else: rating = "šŸ”“ NEEDS IMPROVEMENT" print(f"\n⭐ OVERALL SYSTEM RATING: {rating} ({overall_score:.3f}/1.0)") print(f"šŸ“… Evaluation completed in {results['evaluation_time']:.1f} seconds") print("=" * 70) def save_results(self, results: Dict, filename: str = "evaluation_results.json"): """Save evaluation results to file""" try: # Convert numpy types to native Python types for JSON serialization def convert_types(obj): if hasattr(obj, 'item'): # numpy scalar return obj.item() elif isinstance(obj, dict): return {k: convert_types(v) for k, v in obj.items()} elif isinstance(obj, list): return [convert_types(item) for item in obj] else: return obj serializable_results = convert_types(results) with open(filename, 'w') as f: json.dump(serializable_results, f, indent=2, default=str) print(f"šŸ“ Results saved to {filename}") except Exception as e: print(f"āŒ Error saving results: {e}") def run_interactive_demo(): """Run an interactive demonstration of the system""" print("šŸŽ® Interactive Bug Report Analysis Demo") print("Enter bug descriptions to see real-time analysis") print("Type 'quit' to exit\n") while True: try: query = input("šŸž Describe a bug: ").strip() if query.lower() in ['quit', 'exit', 'q']: print("šŸ‘‹ Thanks for trying the Bug Report Analysis Agent!") break if not query: continue print("\nšŸ” Analyzing...") start_time = time.time() similar_bugs_output, relevant_code_output, suggestions, evaluation_output = analyze_bug_report(query) processing_time = time.time() - start_time print(f"ā±ļø Analysis completed in {processing_time:.2f} seconds\n") print("šŸ“‹ RESULTS:") print("-" * 50) print(similar_bugs_output[:500] + "..." if len(similar_bugs_output) > 500 else similar_bugs_output) print("\n" + evaluation_output) print("\n" + "="*50 + "\n") except KeyboardInterrupt: print("\nšŸ‘‹ Goodbye!") break except Exception as e: print(f"āŒ Error: {e}") if __name__ == "__main__": evaluator_instance = SystemEvaluator() if len(sys.argv) > 1 and sys.argv[1] == "--demo": run_interactive_demo() else: # Run comprehensive evaluation results = evaluator_instance.run_comprehensive_evaluation() evaluator_instance.save_results(results) print("\nšŸŽÆ To run interactive demo: python evaluate_system.py --demo")