File size: 2,251 Bytes
6e55da8
c5ef34e
653911d
 
6e55da8
ee439d6
036f56f
1a24747
 
 
5adc99b
6e55da8
42e6e01
5adc99b
c0e0942
1a24747
 
c0e0942
036f56f
c0e0942
036f56f
 
 
42e6e01
1a24747
c0e0942
1a24747
 
 
 
 
 
 
c0e0942
ee439d6
c0e0942
ee439d6
1a24747
c0e0942
1a24747
42e6e01
 
 
 
1a24747
42e6e01
 
 
 
1a24747
 
c0e0942
653911d
6e55da8
ee439d6
6e55da8
ee439d6
c0e0942
 
6e55da8
 
ee439d6
 
6e55da8
ee439d6
6e55da8
c0e0942
 
 
6e55da8
c0e0942
6e55da8
c0e0942
ee439d6
6e55da8
c0e0942
 
 
 
 
653911d
 
1a24747
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
import gradio as gr
import torch
import numpy as np
from transformers import pipeline
from diffusers import DiffusionPipeline
from pyannote.audio import Pipeline as PyannotePipeline
from dia.model import Dia
from dac.utils import load_model as load_dac_model
from accelerate import init_empty_weights, load_checkpoint_and_dispatch

HF_TOKEN = os.environ["HF_TOKEN"]
device_map = "auto"

# 1. RVQ Codec
rvq = load_dac_model(tag="latest", model_type="44khz")
rvq.eval()
if torch.cuda.is_available(): rvq = rvq.to("cuda")

# 2. VAD
vad_pipe = PyannotePipeline.from_pretrained(
    "pyannote/voice-activity-detection",
    use_auth_token=HF_TOKEN
)

# 3. Ultravox
ultravox_pipe = pipeline(
    model="fixie-ai/ultravox-v0_4",
    trust_remote_code=True,
    device_map=device_map,
    torch_dtype=torch.float16
)

# 4. Audio Diffusion
diff_pipe = DiffusionPipeline.from_pretrained(
    "teticio/audio-diffusion-instrumental-hiphop-256"
).to("cuda")

# 5. Dia TTS
with init_empty_weights():
    dia = Dia.from_pretrained(
        "nari-labs/Dia-1.6B",
        trust_remote_code=True
    )
dia = load_checkpoint_and_dispatch(
    dia,
    "nari-labs/Dia-1.6B",
    device_map=device_map,
    dtype=torch.float16
)

# Inference
def process_audio(audio):
    sr, array = audio
    array = array.numpy() if torch.is_tensor(array) else array

    _ = vad_pipe(array, sampling_rate=sr)
    x = torch.tensor(array).unsqueeze(0).to("cuda")
    codes = rvq.encode(x)
    decoded = rvq.decode(codes).squeeze().cpu().numpy()

    ultra_out = ultravox_pipe({"array": decoded, "sampling_rate": sr})
    text = ultra_out.get("text", "")

    pros = diff_pipe(raw_audio=decoded)["audios"][0]

    tts = dia.generate(f"[emotion:neutral] {text}")
    tts_np = tts.squeeze().cpu().numpy()
    tts_np = tts_np / np.max(np.abs(tts_np)) * 0.95

    return (sr, tts_np), text

# UI
with gr.Blocks(title="Maya AI πŸ“ˆ") as demo:
    gr.Markdown("## Maya-AI: Supernatural Conversational Agent")
    audio_in = gr.Audio(source="microphone", type="numpy")
    send_btn = gr.Button("Send")
    audio_out = gr.Audio()
    text_out = gr.Textbox()
    send_btn.click(process_audio, inputs=audio_in, outputs=[audio_out, text_out])

if __name__ == "__main__":
    demo.launch()