Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import torch | |
import numpy as np | |
from transformers import pipeline | |
from pyannote.audio import Pipeline as PyannotePipeline | |
from dia.model import Dia | |
from dac.utils import load_model as load_dac_model | |
# Environment setup | |
HF_TOKEN = os.environ["HF_TOKEN"] | |
device_map = "auto" | |
print("Loading models...") | |
# 1. Load RVQ Codec | |
print("Loading RVQ Codec...") | |
rvq = load_dac_model(tag="latest", model_type="44khz") | |
rvq.eval() | |
if torch.cuda.is_available(): | |
rvq = rvq.to("cuda") | |
# 2. Load VAD Pipeline | |
print("Loading VAD...") | |
vad_pipe = PyannotePipeline.from_pretrained( | |
"pyannote/voice-activity-detection", | |
use_auth_token=HF_TOKEN | |
) | |
# 3. Load Ultravox Pipeline | |
print("Loading Ultravox...") | |
ultravox_pipe = pipeline( | |
model="fixie-ai/ultravox-v0_4", | |
trust_remote_code=True, | |
device_map=device_map, | |
torch_dtype=torch.float16 | |
) | |
# 4. Skip Audio Diffusion (causing UNet mismatch) | |
print("Skipping Audio Diffusion due to compatibility issues...") | |
diff_pipe = None | |
# 5. Load Dia TTS (correct method based on current API) | |
print("Loading Dia TTS...") | |
dia = Dia.from_pretrained("nari-labs/Dia-1.6B") | |
print("All models loaded successfully!") | |
def process_audio(audio): | |
try: | |
if audio is None: | |
return None, "No audio input provided" | |
sr, array = audio | |
# Ensure numpy array | |
if torch.is_tensor(array): | |
array = array.numpy() | |
# VAD processing | |
try: | |
vad_result = vad_pipe({"waveform": torch.tensor(array).unsqueeze(0), "sample_rate": sr}) | |
except Exception as e: | |
print(f"VAD processing error: {e}") | |
# RVQ encode/decode | |
audio_tensor = torch.tensor(array).unsqueeze(0) | |
if torch.cuda.is_available(): | |
audio_tensor = audio_tensor.to("cuda") | |
codes = rvq.encode(audio_tensor) | |
decoded = rvq.decode(codes).squeeze().cpu().numpy() | |
# Ultravox ASR + LLM | |
ultra_out = ultravox_pipe({"array": decoded, "sampling_rate": sr}) | |
text = ultra_out.get("text", "I understand your audio input.") | |
# Skip diffusion processing due to compatibility issues | |
prosody_audio = decoded | |
# Dia TTS generation | |
tts_output = dia.generate(f"[emotion:neutral] {text}") | |
# Convert to numpy and normalize | |
if torch.is_tensor(tts_output): | |
tts_np = tts_output.squeeze().cpu().numpy() | |
else: | |
tts_np = np.array(tts_output) | |
# Normalize audio output | |
if len(tts_np) > 0: | |
tts_np = tts_np / np.max(np.abs(tts_np)) * 0.95 | |
return (sr, tts_np), text | |
except Exception as e: | |
print(f"Error in process_audio: {e}") | |
return None, f"Processing error: {str(e)}" | |
# Gradio Interface | |
with gr.Blocks(title="Maya AI π") as demo: | |
gr.Markdown("# Maya-AI: Supernatural Conversational Agent") | |
gr.Markdown("Record audio to interact with the AI agent that understands emotions and responds naturally.") | |
with gr.Row(): | |
with gr.Column(): | |
audio_in = gr.Audio( | |
sources=["microphone"], | |
type="numpy", | |
label="Record Your Voice" | |
) | |
send_btn = gr.Button("Send", variant="primary") | |
with gr.Column(): | |
audio_out = gr.Audio(label="AI Response") | |
text_out = gr.Textbox( | |
label="Generated Text", | |
lines=3, | |
placeholder="AI response will appear here..." | |
) | |
# Event handler | |
send_btn.click( | |
fn=process_audio, | |
inputs=audio_in, | |
outputs=[audio_out, text_out] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |