File size: 19,090 Bytes
7ffc610
 
 
 
 
 
 
 
 
 
 
998a350
ab6af92
df7bbc6
ab6af92
 
df7bbc6
ab6af92
 
df7bbc6
7ffc610
1c51010
7ffc610
ab6af92
7ffc610
 
ab6af92
7ffc610
1c51010
7ffc610
 
 
 
 
cf427d1
7ffc610
 
 
 
 
 
 
cf427d1
7ffc610
 
 
 
 
ab6af92
7ffc610
 
 
 
 
 
 
 
ab6af92
 
 
 
7ffc610
ab6af92
 
7ffc610
ab6af92
 
 
 
 
cf427d1
ab6af92
7ffc610
ab6af92
7ffc610
cf427d1
ab6af92
7ffc610
 
ab6af92
7ffc610
ab6af92
7ffc610
 
 
ab6af92
 
 
7ffc610
 
 
 
 
 
cf427d1
ab6af92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf427d1
7ffc610
 
ab6af92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ffc610
 
 
 
 
 
 
ab6af92
7ffc610
 
ab6af92
 
 
7ffc610
 
 
 
 
 
ab6af92
 
 
 
 
 
7ffc610
 
 
 
ab6af92
 
 
7ffc610
ab6af92
 
7ffc610
 
 
 
 
 
 
 
 
 
 
 
ab6af92
7ffc610
ab6af92
 
 
 
 
7ffc610
 
 
 
 
 
 
 
 
 
 
ab6af92
 
7ffc610
ab6af92
 
7ffc610
 
 
 
 
 
 
 
 
 
 
 
 
 
ab6af92
 
 
7ffc610
 
 
 
ab6af92
7ffc610
 
ab6af92
7ffc610
 
 
 
 
 
 
 
 
 
 
 
 
ab6af92
7ffc610
ab6af92
 
7ffc610
ab6af92
 
 
 
7ffc610
 
 
 
ab6af92
 
 
 
 
 
7ffc610
 
 
ab6af92
7ffc610
ab6af92
7ffc610
 
ab6af92
7ffc610
ab6af92
 
 
 
 
7ffc610
 
 
 
 
 
 
ab6af92
7ffc610
 
 
ab6af92
7ffc610
 
 
 
 
 
 
 
 
 
cf427d1
ab6af92
7ffc610
 
 
 
ab6af92
cf427d1
7ffc610
 
 
cf427d1
7ffc610
ab6af92
7ffc610
 
 
 
 
 
 
 
 
322ba51
ab6af92
7ffc610
 
 
 
 
 
 
 
 
 
ab6af92
7ffc610
 
 
 
 
 
 
 
 
2c1a7ab
7ffc610
 
ab6af92
7ffc610
 
 
ab6af92
2c1a7ab
cf427d1
ab6af92
322ba51
ab6af92
7ffc610
 
ab6af92
 
 
 
 
 
 
7ffc610
ab6af92
7ffc610
 
322ba51
 
 
ab6af92
7ffc610
 
 
 
322ba51
cf427d1
 
7ffc610
 
 
 
 
322ba51
7ffc610
 
322ba51
7ffc610
322ba51
ab6af92
322ba51
cf427d1
ab6af92
322ba51
ab6af92
322ba51
 
7ffc610
ab6af92
 
7ffc610
 
 
 
 
 
 
 
322ba51
 
 
7ffc610
 
 
 
 
 
ab6af92
 
7ffc610
 
 
 
 
 
ab6af92
 
7ffc610
 
ab6af92
7ffc610
 
 
 
 
ab6af92
7ffc610
 
 
 
 
 
 
322ba51
 
7ffc610
 
 
 
322ba51
 
7ffc610
 
 
322ba51
7ffc610
 
 
 
 
 
ab6af92
7ffc610
 
 
 
ab6af92
7ffc610
 
 
ab6af92
7ffc610
 
 
ab6af92
 
 
 
 
 
 
 
7ffc610
 
cf427d1
 
2c1a7ab
cf427d1
7ffc610
ab6af92
 
 
 
 
 
 
322ba51
7ffc610
 
 
 
 
 
 
 
 
ab6af92
 
7ffc610
 
ab6af92
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
import gradio as gr
import torch
import numpy as np
import librosa
import soundfile as sf
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import warnings
import json
import time
from datetime import datetime
import os

# Import TTS with fallback
try:
    from TTS.api import TTS
    TTS_AVAILABLE = True
except ImportError:
    print("⚠️ TTS not available, using text-only mode")
    TTS_AVAILABLE = False

warnings.filterwarnings("ignore")

# Global models
asr_pipe = None
qwen_model = None
qwen_tokenizer = None
tts_model = None
conversation_history = []

class ConversationManager:
    def __init__(self, max_exchanges=5):
        self.history = []
        self.max_exchanges = max_exchanges
        self.current_emotion = "neutral"
        
    def add_exchange(self, user_input, ai_response, emotion="neutral"):
        self.history.append({
            "timestamp": datetime.now().isoformat(),
            "user": user_input,
            "ai": ai_response,
            "emotion": emotion
        })
        
        if len(self.history) > self.max_exchanges:
            self.history = self.history[-self.max_exchanges:]
    
    def get_context(self):
        context = ""
        for exchange in self.history[-3:]:
            context += f"User: {exchange['user']}\nAI: {exchange['ai']}\n"
        return context
    
    def clear(self):
        self.history = []
        self.current_emotion = "neutral"

def load_models():
    """Load all models with proper error handling"""
    global asr_pipe, qwen_model, qwen_tokenizer, tts_model
    
    print("πŸš€ Loading models...")
    
    # Load ASR model
    print("🎀 Loading Whisper for ASR...")
    try:
        asr_pipe = pipeline(
            "automatic-speech-recognition",
            model="openai/whisper-base",
            torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
            device=0 if torch.cuda.is_available() else -1
        )
        print("βœ… Whisper ASR loaded successfully!")
    except Exception as e:
        print(f"❌ Error loading Whisper: {e}")
        return False
    
    # Load Qwen model
    print("🧠 Loading Qwen2.5-1.5B for conversation...")
    try:
        model_name = "Qwen/Qwen2.5-1.5B-Instruct"
        qwen_tokenizer = AutoTokenizer.from_pretrained(
            model_name,
            trust_remote_code=True
        )
        qwen_model = AutoModelForCausalLM.from_pretrained(
            model_name,
            torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
            device_map="auto" if torch.cuda.is_available() else None,
            trust_remote_code=True
        )
        print("βœ… Qwen loaded successfully!")
    except Exception as e:
        print(f"❌ Error loading Qwen: {e}")
        return False
    
    # Load TTS model
    print("πŸŽ™οΈ Loading TTS model...")
    if TTS_AVAILABLE:
        try:
            # Use Coqui TTS with a good female voice
            tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False)
            if torch.cuda.is_available():
                tts_model = tts_model.to("cuda")
            print("βœ… TTS loaded successfully!")
        except Exception as e:
            print(f"⚠️ TTS failed to load: {e}")
            tts_model = None
    else:
        print("⚠️ TTS not available, using text-only mode")
        tts_model = None
    
    return True

def detect_emotion_from_text(text):
    """Simple emotion detection from text"""
    text_lower = text.lower()
    
    # Emotion keywords
    if any(word in text_lower for word in ['happy', 'great', 'awesome', 'wonderful', 'excited', 'laugh', 'amazing', 'fantastic']):
        return 'happy'
    elif any(word in text_lower for word in ['sad', 'upset', 'disappointed', 'cry', 'terrible', 'awful', 'depressed']):
        return 'sad'
    elif any(word in text_lower for word in ['angry', 'mad', 'furious', 'annoyed', 'frustrated', 'hate']):
        return 'angry'
    elif any(word in text_lower for word in ['wow', 'incredible', 'surprised', 'unbelievable', 'shocking']):
        return 'surprised'
    else:
        return 'neutral'

def speech_to_text_with_emotion(audio_input):
    """Convert speech to text and detect emotion"""
    try:
        if audio_input is None:
            return "", "neutral"
        
        # Process audio input
        if isinstance(audio_input, tuple):
            sample_rate, audio_data = audio_input
            # Convert to float32 and handle stereo
            if audio_data.dtype != np.float32:
                audio_data = audio_data.astype(np.float32)
            if len(audio_data.shape) > 1:
                audio_data = audio_data.mean(axis=1)
        else:
            audio_data = audio_input
            sample_rate = 16000
        
        # Normalize audio
        if len(audio_data) > 0:
            max_val = np.max(np.abs(audio_data))
            if max_val > 0:
                audio_data = audio_data / max_val
        
        # Resample to 16kHz if needed
        if sample_rate != 16000:
            audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
        
        # Speech to text
        result = asr_pipe(audio_data, sampling_rate=16000)
        transcription = result['text'].strip()
        
        # Detect emotion from transcription
        emotion = detect_emotion_from_text(transcription)
        
        return transcription, emotion
        
    except Exception as e:
        print(f"Error in STT: {e}")
        return "Sorry, I couldn't understand that.", "neutral"

def generate_contextual_response(user_input, emotion, conversation_manager):
    """Generate contextual response using Qwen"""
    try:
        context = conversation_manager.get_context()
        
        # Emotional response styles
        emotional_prompts = {
            "happy": "Respond with enthusiasm and joy. Use positive language and show excitement.",
            "sad": "Respond with empathy and comfort. Be gentle, understanding, and supportive.",
            "angry": "Respond calmly and try to help. Be patient and de-escalate the situation.",
            "surprised": "Share in the surprise and show curiosity. Be engaging and interested.",
            "neutral": "Respond naturally and conversationally. Be helpful and friendly."
        }
        
        system_prompt = f"""You are Maya, a friendly and emotionally intelligent AI assistant. 
        {emotional_prompts.get(emotion, emotional_prompts['neutral'])}
        
        Previous conversation context:
        {context}
        
        Current user emotion: {emotion}
        
        Guidelines:
        - Keep responses concise (1-2 sentences maximum)
        - Match the user's emotional tone appropriately
        - Be natural and conversational
        - Show empathy and understanding
        - Provide helpful responses
        """
        
        messages = [
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": user_input}
        ]
        
        # Generate response
        text = qwen_tokenizer.apply_chat_template(
            messages, 
            tokenize=False, 
            add_generation_prompt=True
        )
        
        model_inputs = qwen_tokenizer([text], return_tensors="pt")
        if torch.cuda.is_available():
            model_inputs = model_inputs.to(qwen_model.device)
        
        with torch.no_grad():
            generated_ids = qwen_model.generate(
                model_inputs.input_ids,
                max_new_tokens=80,
                do_sample=True,
                temperature=0.7,
                top_p=0.9,
                pad_token_id=qwen_tokenizer.eos_token_id
            )
        
        generated_ids = [
            output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
        ]
        
        response = qwen_tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
        
        return response.strip()
        
    except Exception as e:
        print(f"Error in response generation: {e}")
        return "I'm sorry, I'm having trouble processing that right now. Could you please try again?"

def text_to_speech_emotional(text, emotion="neutral"):
    """Convert text to speech with emotional context"""
    try:
        if tts_model is None:
            print(f"πŸ”Š Maya says ({emotion}): {text}")
            return None
        
        # Clear GPU cache
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        
        # Add emotional context to text
        emotional_prefixes = {
            "happy": "[Speaking with joy] ",
            "sad": "[Speaking gently] ",
            "angry": "[Speaking calmly] ",
            "surprised": "[Speaking with excitement] ",
            "neutral": ""
        }
        
        enhanced_text = f"{emotional_prefixes.get(emotion, '')}{text}"
        
        print(f"Generating TTS for: {enhanced_text}")
        
        # Generate audio
        audio_output = tts_model.tts(text=enhanced_text)
        
        # Convert to numpy array if needed
        if isinstance(audio_output, list):
            audio_output = np.array(audio_output, dtype=np.float32)
        elif torch.is_tensor(audio_output):
            audio_output = audio_output.cpu().numpy().astype(np.float32)
        
        # Normalize audio
        if len(audio_output) > 0:
            max_val = np.max(np.abs(audio_output))
            if max_val > 1.0:
                audio_output = audio_output / max_val * 0.95
        
        return (22050, audio_output)  # Return sample rate and audio data
        
    except Exception as e:
        print(f"Error in TTS: {e}")
        print(f"πŸ”Š Maya says ({emotion}): {text}")
        return None

# Initialize conversation manager
conv_manager = ConversationManager()

def start_call():
    """Initialize call and return greeting"""
    conv_manager.clear()
    greeting_text = "Hello! I'm Maya, your AI assistant. How can I help you today?"
    greeting_audio = text_to_speech_emotional(greeting_text, "happy")
    
    return greeting_audio, greeting_text, "Call started! πŸ“ž Ready to chat!"

def process_conversation(audio_input):
    """Main conversation processing pipeline"""
    if audio_input is None:
        return None, "Please record some audio first.", "", "❌ No audio input received."
    
    try:
        # Step 1: Speech to Text + Emotion Detection
        user_text, emotion = speech_to_text_with_emotion(audio_input)
        
        if not user_text or user_text.strip() == "":
            return None, "I didn't catch that. Could you please repeat?", "", "❌ No speech detected."
        
        # Step 2: Generate contextual response
        ai_response = generate_contextual_response(user_text, emotion, conv_manager)
        
        # Step 3: Convert to speech
        response_audio = text_to_speech_emotional(ai_response, emotion)
        
        # Step 4: Update conversation history
        conv_manager.add_exchange(user_text, ai_response, emotion)
        
        status = f"βœ… Processed successfully! | Emotion: {emotion} | Exchange: {len(conv_manager.history)}/5"
        
        return response_audio, ai_response, user_text, status
        
    except Exception as e:
        error_msg = f"❌ Error processing conversation: {str(e)}"
        return None, "I'm sorry, I encountered an error. Please try again.", "", error_msg

def get_conversation_history():
    """Return formatted conversation history"""
    if not conv_manager.history:
        return "No conversation history yet. Start a call to begin chatting!"
    
    history_text = "πŸ“‹ **Conversation History:**\n\n"
    for i, exchange in enumerate(conv_manager.history, 1):
        timestamp = exchange['timestamp'][:19].replace('T', ' ')
        history_text += f"**Exchange {i}** ({timestamp}) - Emotion: {exchange['emotion']}\n"
        history_text += f"πŸ‘€ **You:** {exchange['user']}\n"
        history_text += f"πŸ€– **Maya:** {exchange['ai']}\n\n"
    
    return history_text

def end_call():
    """End call and clear conversation"""
    farewell_text = "Thank you for talking with me! Have a wonderful day!"
    farewell_audio = text_to_speech_emotional(farewell_text, "happy")
    conv_manager.clear()
    
    return farewell_audio, farewell_text, "Call ended. πŸ“žβŒ Thanks for chatting!"

def create_interface():
    """Create the Gradio interface"""
    with gr.Blocks(
        title="Maya AI - Speech-to-Speech Assistant",
        theme=gr.themes.Soft(),
        css="""
        .main-header { 
            background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); 
            border-radius: 15px; 
            padding: 20px; 
            text-align: center; 
            margin-bottom: 20px; 
        }
        .call-button { background: linear-gradient(45deg, #FF6B6B, #4ECDC4) !important; }
        .process-button { background: linear-gradient(45deg, #45B7D1, #96CEB4) !important; }
        .end-button { background: linear-gradient(45deg, #FFA07A, #FF6347) !important; }
        """
    ) as demo:
        
        gr.HTML("""
        <div class="main-header">
            <h1 style="color: white; margin: 0; font-size: 2.5em;">πŸŽ™οΈ Maya AI</h1>
            <p style="color: white; margin: 10px 0; font-size: 1.2em;">Advanced Speech-to-Speech Conversational AI</p>
            <p style="color: #E8E8E8; margin: 0;">Natural β€’ Emotional β€’ Contextual</p>
        </div>
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                # Call Controls
                gr.HTML("<h3>πŸ“ž Call Controls</h3>")
                start_btn = gr.Button("πŸ“ž Start Call", elem_classes="call-button", size="lg")
                end_btn = gr.Button("πŸ“žβŒ End Call", elem_classes="end-button", size="lg")
                
                # Audio Input
                gr.HTML("<h3>🎀 Voice Input</h3>")
                audio_input = gr.Audio(
                    label="Record Your Message",
                    sources=["microphone"],
                    type="numpy"
                )
                
                process_btn = gr.Button("🎯 Process Message", elem_classes="process-button", variant="primary", size="lg")
                
                # Status Display
                status_display = gr.Textbox(
                    label="πŸ“Š Status",
                    interactive=False,
                    lines=2,
                    value="Ready to start! Click 'Start Call' to begin."
                )
            
            with gr.Column(scale=2):
                # AI Response Audio
                gr.HTML("<h3>πŸ”Š Maya's Response</h3>")
                response_audio = gr.Audio(
                    label="Maya's Voice Response",
                    type="numpy",
                    interactive=False
                )
                
                # Text Displays
                with gr.Row():
                    with gr.Column():
                        user_text_display = gr.Textbox(
                            label="πŸ‘€ What You Said",
                            interactive=False,
                            lines=3,
                            placeholder="Your speech will appear here..."
                        )
                    
                    with gr.Column():
                        ai_text_display = gr.Textbox(
                            label="πŸ€– Maya's Response",
                            interactive=False,
                            lines=3,
                            placeholder="Maya's response will appear here..."
                        )
        
        # Conversation History Section
        with gr.Row():
            with gr.Column():
                gr.HTML("<h3>πŸ“‹ Conversation History</h3>")
                history_btn = gr.Button("πŸ“‹ Show History", variant="secondary")
                history_display = gr.Markdown(
                    value="No conversation history yet. Start a call to begin chatting!",
                    label="Conversation Log"
                )
        
        # Event Handlers
        start_btn.click(
            fn=start_call,
            outputs=[response_audio, ai_text_display, status_display]
        )
        
        process_btn.click(
            fn=process_conversation,
            inputs=[audio_input],
            outputs=[response_audio, ai_text_display, user_text_display, status_display]
        )
        
        end_btn.click(
            fn=end_call,
            outputs=[response_audio, ai_text_display, status_display]
        )
        
        history_btn.click(
            fn=get_conversation_history,
            outputs=[history_display]
        )
        
        # Instructions
        gr.HTML("""
        <div style="margin-top: 20px; padding: 20px; background: #f8f9fa; border-radius: 10px; border-left: 5px solid #007bff;">
            <h3>πŸ’‘ How to Use Maya AI:</h3>
            <ol>
                <li><strong>Start Call:</strong> Click "πŸ“ž Start Call" to initialize Maya</li>
                <li><strong>Record:</strong> Use the microphone to record your message</li>
                <li><strong>Process:</strong> Click "🎯 Process Message" to get Maya's response</li>
                <li><strong>Listen:</strong> Maya will respond with natural, emotional speech</li>
                <li><strong>Continue:</strong> Keep chatting (up to 5 exchanges with context)</li>
                <li><strong>End:</strong> Click "πŸ“žβŒ End Call" when finished</li>
            </ol>
            
            <h4>🎭 Features:</h4>
            <ul>
                <li>🎀 <strong>Speech Recognition:</strong> Powered by Whisper</li>
                <li>🧠 <strong>Smart Responses:</strong> Using Qwen2.5-1.5B</li>
                <li>🎭 <strong>Emotion Detection:</strong> Automatic emotion recognition</li>
                <li>πŸ”Š <strong>Natural Speech:</strong> High-quality TTS with emotions</li>
                <li>πŸ’­ <strong>Context Memory:</strong> Remembers conversation flow</li>
            </ul>
        </div>
        """)
    
    return demo

if __name__ == "__main__":
    print("πŸš€ Initializing Maya AI System...")
    print("πŸ”§ Checking GPU availability...")
    
    if torch.cuda.is_available():
        print(f"βœ… GPU detected: {torch.cuda.get_device_name()}")
        print(f"πŸ’Ύ GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
    else:
        print("⚠️ No GPU detected, using CPU")
    
    if load_models():
        print("βœ… All models loaded successfully!")
        print("🌟 Launching Maya AI Interface...")
        
        demo = create_interface()
        demo.launch(
            server_name="0.0.0.0",
            server_port=7860,
            share=True,
            show_error=True,
            debug=False
        )
    else:
        print("❌ Failed to load models. Please check the logs above for details.")