File size: 19,090 Bytes
7ffc610 998a350 ab6af92 df7bbc6 ab6af92 df7bbc6 ab6af92 df7bbc6 7ffc610 1c51010 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 1c51010 7ffc610 cf427d1 7ffc610 cf427d1 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 cf427d1 ab6af92 7ffc610 ab6af92 7ffc610 cf427d1 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 cf427d1 ab6af92 cf427d1 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 cf427d1 ab6af92 7ffc610 ab6af92 cf427d1 7ffc610 cf427d1 7ffc610 ab6af92 7ffc610 322ba51 ab6af92 7ffc610 ab6af92 7ffc610 2c1a7ab 7ffc610 ab6af92 7ffc610 ab6af92 2c1a7ab cf427d1 ab6af92 322ba51 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 322ba51 ab6af92 7ffc610 322ba51 cf427d1 7ffc610 322ba51 7ffc610 322ba51 7ffc610 322ba51 ab6af92 322ba51 cf427d1 ab6af92 322ba51 ab6af92 322ba51 7ffc610 ab6af92 7ffc610 322ba51 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 322ba51 7ffc610 322ba51 7ffc610 322ba51 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 cf427d1 2c1a7ab cf427d1 7ffc610 ab6af92 322ba51 7ffc610 ab6af92 7ffc610 ab6af92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
import gradio as gr
import torch
import numpy as np
import librosa
import soundfile as sf
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import warnings
import json
import time
from datetime import datetime
import os
# Import TTS with fallback
try:
from TTS.api import TTS
TTS_AVAILABLE = True
except ImportError:
print("β οΈ TTS not available, using text-only mode")
TTS_AVAILABLE = False
warnings.filterwarnings("ignore")
# Global models
asr_pipe = None
qwen_model = None
qwen_tokenizer = None
tts_model = None
conversation_history = []
class ConversationManager:
def __init__(self, max_exchanges=5):
self.history = []
self.max_exchanges = max_exchanges
self.current_emotion = "neutral"
def add_exchange(self, user_input, ai_response, emotion="neutral"):
self.history.append({
"timestamp": datetime.now().isoformat(),
"user": user_input,
"ai": ai_response,
"emotion": emotion
})
if len(self.history) > self.max_exchanges:
self.history = self.history[-self.max_exchanges:]
def get_context(self):
context = ""
for exchange in self.history[-3:]:
context += f"User: {exchange['user']}\nAI: {exchange['ai']}\n"
return context
def clear(self):
self.history = []
self.current_emotion = "neutral"
def load_models():
"""Load all models with proper error handling"""
global asr_pipe, qwen_model, qwen_tokenizer, tts_model
print("π Loading models...")
# Load ASR model
print("π€ Loading Whisper for ASR...")
try:
asr_pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-base",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device=0 if torch.cuda.is_available() else -1
)
print("β
Whisper ASR loaded successfully!")
except Exception as e:
print(f"β Error loading Whisper: {e}")
return False
# Load Qwen model
print("π§ Loading Qwen2.5-1.5B for conversation...")
try:
model_name = "Qwen/Qwen2.5-1.5B-Instruct"
qwen_tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True
)
qwen_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None,
trust_remote_code=True
)
print("β
Qwen loaded successfully!")
except Exception as e:
print(f"β Error loading Qwen: {e}")
return False
# Load TTS model
print("ποΈ Loading TTS model...")
if TTS_AVAILABLE:
try:
# Use Coqui TTS with a good female voice
tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False)
if torch.cuda.is_available():
tts_model = tts_model.to("cuda")
print("β
TTS loaded successfully!")
except Exception as e:
print(f"β οΈ TTS failed to load: {e}")
tts_model = None
else:
print("β οΈ TTS not available, using text-only mode")
tts_model = None
return True
def detect_emotion_from_text(text):
"""Simple emotion detection from text"""
text_lower = text.lower()
# Emotion keywords
if any(word in text_lower for word in ['happy', 'great', 'awesome', 'wonderful', 'excited', 'laugh', 'amazing', 'fantastic']):
return 'happy'
elif any(word in text_lower for word in ['sad', 'upset', 'disappointed', 'cry', 'terrible', 'awful', 'depressed']):
return 'sad'
elif any(word in text_lower for word in ['angry', 'mad', 'furious', 'annoyed', 'frustrated', 'hate']):
return 'angry'
elif any(word in text_lower for word in ['wow', 'incredible', 'surprised', 'unbelievable', 'shocking']):
return 'surprised'
else:
return 'neutral'
def speech_to_text_with_emotion(audio_input):
"""Convert speech to text and detect emotion"""
try:
if audio_input is None:
return "", "neutral"
# Process audio input
if isinstance(audio_input, tuple):
sample_rate, audio_data = audio_input
# Convert to float32 and handle stereo
if audio_data.dtype != np.float32:
audio_data = audio_data.astype(np.float32)
if len(audio_data.shape) > 1:
audio_data = audio_data.mean(axis=1)
else:
audio_data = audio_input
sample_rate = 16000
# Normalize audio
if len(audio_data) > 0:
max_val = np.max(np.abs(audio_data))
if max_val > 0:
audio_data = audio_data / max_val
# Resample to 16kHz if needed
if sample_rate != 16000:
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
# Speech to text
result = asr_pipe(audio_data, sampling_rate=16000)
transcription = result['text'].strip()
# Detect emotion from transcription
emotion = detect_emotion_from_text(transcription)
return transcription, emotion
except Exception as e:
print(f"Error in STT: {e}")
return "Sorry, I couldn't understand that.", "neutral"
def generate_contextual_response(user_input, emotion, conversation_manager):
"""Generate contextual response using Qwen"""
try:
context = conversation_manager.get_context()
# Emotional response styles
emotional_prompts = {
"happy": "Respond with enthusiasm and joy. Use positive language and show excitement.",
"sad": "Respond with empathy and comfort. Be gentle, understanding, and supportive.",
"angry": "Respond calmly and try to help. Be patient and de-escalate the situation.",
"surprised": "Share in the surprise and show curiosity. Be engaging and interested.",
"neutral": "Respond naturally and conversationally. Be helpful and friendly."
}
system_prompt = f"""You are Maya, a friendly and emotionally intelligent AI assistant.
{emotional_prompts.get(emotion, emotional_prompts['neutral'])}
Previous conversation context:
{context}
Current user emotion: {emotion}
Guidelines:
- Keep responses concise (1-2 sentences maximum)
- Match the user's emotional tone appropriately
- Be natural and conversational
- Show empathy and understanding
- Provide helpful responses
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_input}
]
# Generate response
text = qwen_tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = qwen_tokenizer([text], return_tensors="pt")
if torch.cuda.is_available():
model_inputs = model_inputs.to(qwen_model.device)
with torch.no_grad():
generated_ids = qwen_model.generate(
model_inputs.input_ids,
max_new_tokens=80,
do_sample=True,
temperature=0.7,
top_p=0.9,
pad_token_id=qwen_tokenizer.eos_token_id
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = qwen_tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response.strip()
except Exception as e:
print(f"Error in response generation: {e}")
return "I'm sorry, I'm having trouble processing that right now. Could you please try again?"
def text_to_speech_emotional(text, emotion="neutral"):
"""Convert text to speech with emotional context"""
try:
if tts_model is None:
print(f"π Maya says ({emotion}): {text}")
return None
# Clear GPU cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Add emotional context to text
emotional_prefixes = {
"happy": "[Speaking with joy] ",
"sad": "[Speaking gently] ",
"angry": "[Speaking calmly] ",
"surprised": "[Speaking with excitement] ",
"neutral": ""
}
enhanced_text = f"{emotional_prefixes.get(emotion, '')}{text}"
print(f"Generating TTS for: {enhanced_text}")
# Generate audio
audio_output = tts_model.tts(text=enhanced_text)
# Convert to numpy array if needed
if isinstance(audio_output, list):
audio_output = np.array(audio_output, dtype=np.float32)
elif torch.is_tensor(audio_output):
audio_output = audio_output.cpu().numpy().astype(np.float32)
# Normalize audio
if len(audio_output) > 0:
max_val = np.max(np.abs(audio_output))
if max_val > 1.0:
audio_output = audio_output / max_val * 0.95
return (22050, audio_output) # Return sample rate and audio data
except Exception as e:
print(f"Error in TTS: {e}")
print(f"π Maya says ({emotion}): {text}")
return None
# Initialize conversation manager
conv_manager = ConversationManager()
def start_call():
"""Initialize call and return greeting"""
conv_manager.clear()
greeting_text = "Hello! I'm Maya, your AI assistant. How can I help you today?"
greeting_audio = text_to_speech_emotional(greeting_text, "happy")
return greeting_audio, greeting_text, "Call started! π Ready to chat!"
def process_conversation(audio_input):
"""Main conversation processing pipeline"""
if audio_input is None:
return None, "Please record some audio first.", "", "β No audio input received."
try:
# Step 1: Speech to Text + Emotion Detection
user_text, emotion = speech_to_text_with_emotion(audio_input)
if not user_text or user_text.strip() == "":
return None, "I didn't catch that. Could you please repeat?", "", "β No speech detected."
# Step 2: Generate contextual response
ai_response = generate_contextual_response(user_text, emotion, conv_manager)
# Step 3: Convert to speech
response_audio = text_to_speech_emotional(ai_response, emotion)
# Step 4: Update conversation history
conv_manager.add_exchange(user_text, ai_response, emotion)
status = f"β
Processed successfully! | Emotion: {emotion} | Exchange: {len(conv_manager.history)}/5"
return response_audio, ai_response, user_text, status
except Exception as e:
error_msg = f"β Error processing conversation: {str(e)}"
return None, "I'm sorry, I encountered an error. Please try again.", "", error_msg
def get_conversation_history():
"""Return formatted conversation history"""
if not conv_manager.history:
return "No conversation history yet. Start a call to begin chatting!"
history_text = "π **Conversation History:**\n\n"
for i, exchange in enumerate(conv_manager.history, 1):
timestamp = exchange['timestamp'][:19].replace('T', ' ')
history_text += f"**Exchange {i}** ({timestamp}) - Emotion: {exchange['emotion']}\n"
history_text += f"π€ **You:** {exchange['user']}\n"
history_text += f"π€ **Maya:** {exchange['ai']}\n\n"
return history_text
def end_call():
"""End call and clear conversation"""
farewell_text = "Thank you for talking with me! Have a wonderful day!"
farewell_audio = text_to_speech_emotional(farewell_text, "happy")
conv_manager.clear()
return farewell_audio, farewell_text, "Call ended. πβ Thanks for chatting!"
def create_interface():
"""Create the Gradio interface"""
with gr.Blocks(
title="Maya AI - Speech-to-Speech Assistant",
theme=gr.themes.Soft(),
css="""
.main-header {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border-radius: 15px;
padding: 20px;
text-align: center;
margin-bottom: 20px;
}
.call-button { background: linear-gradient(45deg, #FF6B6B, #4ECDC4) !important; }
.process-button { background: linear-gradient(45deg, #45B7D1, #96CEB4) !important; }
.end-button { background: linear-gradient(45deg, #FFA07A, #FF6347) !important; }
"""
) as demo:
gr.HTML("""
<div class="main-header">
<h1 style="color: white; margin: 0; font-size: 2.5em;">ποΈ Maya AI</h1>
<p style="color: white; margin: 10px 0; font-size: 1.2em;">Advanced Speech-to-Speech Conversational AI</p>
<p style="color: #E8E8E8; margin: 0;">Natural β’ Emotional β’ Contextual</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
# Call Controls
gr.HTML("<h3>π Call Controls</h3>")
start_btn = gr.Button("π Start Call", elem_classes="call-button", size="lg")
end_btn = gr.Button("πβ End Call", elem_classes="end-button", size="lg")
# Audio Input
gr.HTML("<h3>π€ Voice Input</h3>")
audio_input = gr.Audio(
label="Record Your Message",
sources=["microphone"],
type="numpy"
)
process_btn = gr.Button("π― Process Message", elem_classes="process-button", variant="primary", size="lg")
# Status Display
status_display = gr.Textbox(
label="π Status",
interactive=False,
lines=2,
value="Ready to start! Click 'Start Call' to begin."
)
with gr.Column(scale=2):
# AI Response Audio
gr.HTML("<h3>π Maya's Response</h3>")
response_audio = gr.Audio(
label="Maya's Voice Response",
type="numpy",
interactive=False
)
# Text Displays
with gr.Row():
with gr.Column():
user_text_display = gr.Textbox(
label="π€ What You Said",
interactive=False,
lines=3,
placeholder="Your speech will appear here..."
)
with gr.Column():
ai_text_display = gr.Textbox(
label="π€ Maya's Response",
interactive=False,
lines=3,
placeholder="Maya's response will appear here..."
)
# Conversation History Section
with gr.Row():
with gr.Column():
gr.HTML("<h3>π Conversation History</h3>")
history_btn = gr.Button("π Show History", variant="secondary")
history_display = gr.Markdown(
value="No conversation history yet. Start a call to begin chatting!",
label="Conversation Log"
)
# Event Handlers
start_btn.click(
fn=start_call,
outputs=[response_audio, ai_text_display, status_display]
)
process_btn.click(
fn=process_conversation,
inputs=[audio_input],
outputs=[response_audio, ai_text_display, user_text_display, status_display]
)
end_btn.click(
fn=end_call,
outputs=[response_audio, ai_text_display, status_display]
)
history_btn.click(
fn=get_conversation_history,
outputs=[history_display]
)
# Instructions
gr.HTML("""
<div style="margin-top: 20px; padding: 20px; background: #f8f9fa; border-radius: 10px; border-left: 5px solid #007bff;">
<h3>π‘ How to Use Maya AI:</h3>
<ol>
<li><strong>Start Call:</strong> Click "π Start Call" to initialize Maya</li>
<li><strong>Record:</strong> Use the microphone to record your message</li>
<li><strong>Process:</strong> Click "π― Process Message" to get Maya's response</li>
<li><strong>Listen:</strong> Maya will respond with natural, emotional speech</li>
<li><strong>Continue:</strong> Keep chatting (up to 5 exchanges with context)</li>
<li><strong>End:</strong> Click "πβ End Call" when finished</li>
</ol>
<h4>π Features:</h4>
<ul>
<li>π€ <strong>Speech Recognition:</strong> Powered by Whisper</li>
<li>π§ <strong>Smart Responses:</strong> Using Qwen2.5-1.5B</li>
<li>π <strong>Emotion Detection:</strong> Automatic emotion recognition</li>
<li>π <strong>Natural Speech:</strong> High-quality TTS with emotions</li>
<li>π <strong>Context Memory:</strong> Remembers conversation flow</li>
</ul>
</div>
""")
return demo
if __name__ == "__main__":
print("π Initializing Maya AI System...")
print("π§ Checking GPU availability...")
if torch.cuda.is_available():
print(f"β
GPU detected: {torch.cuda.get_device_name()}")
print(f"πΎ GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
else:
print("β οΈ No GPU detected, using CPU")
if load_models():
print("β
All models loaded successfully!")
print("π Launching Maya AI Interface...")
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True,
debug=False
)
else:
print("β Failed to load models. Please check the logs above for details.")
|