File size: 10,832 Bytes
cf427d1 daf7e26 322ba51 cf427d1 1c51010 cf427d1 322ba51 998a350 daf7e26 cf427d1 1c51010 322ba51 1c51010 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 2c1a7ab cf427d1 322ba51 cf427d1 2c1a7ab 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 322ba51 cf427d1 2c1a7ab 322ba51 cf427d1 322ba51 cf427d1 322ba51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import os, torch, numpy as np, soundfile as sf, gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline
import nemo.collections.asr as nemo_asr
from TTS.api import TTS
from sklearn.linear_model import LogisticRegression
from datasets import load_dataset
import tempfile
import gc
# Configuration
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
SEED = 42; SAMPLE_RATE = 22050; TEMPERATURE = 0.7
torch.manual_seed(SEED); np.random.seed(SEED)
print(f"π System Info:")
print(f"Device: {DEVICE}")
print(f"NumPy: {np.__version__}")
print(f"PyTorch: {torch.__version__}")
if torch.cuda.is_available():
print(f"CUDA: {torch.version.cuda}")
class ConversationalAI:
def __init__(self):
print("π Initializing Conversational AI...")
self.setup_models()
print("β
All models loaded successfully!")
def setup_models(self):
# 1. ASR: Parakeet RNNT
print("π’ Loading ASR model...")
try:
self.asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained(
"nvidia/parakeet-rnnt-1.1b"
).to(DEVICE).eval()
print("β
Parakeet ASR loaded")
except Exception as e:
print(f"β οΈ Parakeet failed: {e}")
print("π Loading Whisper fallback...")
self.asr_pipeline = pipeline(
"automatic-speech-recognition",
model="openai/whisper-base.en",
device=0 if DEVICE == "cuda" else -1
)
print("β
Whisper ASR loaded")
# 2. SER: Emotion classifier (simplified for demo)
print("π Setting up emotion recognition...")
X_demo = np.random.rand(100, 128)
y_demo = np.random.randint(0, 5, 100) # 5 emotions: neutral, happy, sad, angry, surprised
self.ser_clf = LogisticRegression().fit(X_demo, y_demo)
self.emotion_labels = ["neutral", "happy", "sad", "angry", "surprised"]
print("β
SER model ready")
# 3. LLM: Conversational model
print("π§ Loading LLM...")
bnb_cfg = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
model_name = "microsoft/DialoGPT-medium"
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.tokenizer.pad_token = self.tokenizer.eos_token
self.llm_model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_cfg,
device_map="auto",
torch_dtype=torch.float16,
low_cpu_mem_usage=True
)
print("β
LLM loaded")
# 4. TTS: Text-to-Speech
print("π£οΈ Loading TTS...")
try:
self.tts = TTS("tts_models/en/ljspeech/tacotron2-DDC").to(DEVICE)
print("β
TTS loaded")
except Exception as e:
print(f"β οΈ TTS error: {e}")
self.tts = None
# Memory cleanup
if DEVICE == "cuda":
torch.cuda.empty_cache()
gc.collect()
def transcribe(self, audio):
"""Convert speech to text"""
try:
if hasattr(self, 'asr_model'):
# Use Parakeet
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
sf.write(temp_file.name, audio[1], audio[0])
transcription = self.asr_model.transcribe([temp_file.name])[0]
os.unlink(temp_file.name)
return transcription.text if hasattr(transcription, 'text') else str(transcription)
else:
# Use Whisper
return self.asr_pipeline({"sampling_rate": audio[0], "raw": audio[1]})["text"]
except Exception as e:
print(f"ASR Error: {e}")
return "Sorry, I couldn't understand the audio."
def predict_emotion(self):
"""Predict emotion from audio (simplified demo)"""
emotion_idx = self.ser_clf.predict(np.random.rand(1, 128))[0]
return self.emotion_labels[emotion_idx]
def generate_response(self, text, emotion):
"""Generate conversational response"""
try:
# Create emotion-aware prompt
prompt = f"Human: {text}\nAssistant (feeling {emotion}):"
inputs = self.tokenizer.encode(prompt, return_tensors="pt", max_length=512, truncation=True).to(DEVICE)
with torch.no_grad():
outputs = self.llm_model.generate(
inputs,
max_length=inputs.shape[1] + 100,
temperature=TEMPERATURE,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id,
no_repeat_ngram_size=2,
top_p=0.9
)
response = self.tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)
response = response.split("Human:")[0].strip()
return response if response else "I understand. Please tell me more."
except Exception as e:
print(f"LLM Error: {e}")
return "I'm having trouble processing that. Could you please rephrase?"
def synthesize(self, text):
"""Convert text to speech"""
try:
if self.tts:
wav = self.tts.tts(text=text)
if isinstance(wav, list):
wav = np.array(wav, dtype=np.float32)
# Normalize audio
wav = wav / np.max(np.abs(wav)) if np.max(np.abs(wav)) > 0 else wav
return (SAMPLE_RATE, (wav * 32767).astype(np.int16))
else:
# Return silence if TTS fails
return (SAMPLE_RATE, np.zeros(SAMPLE_RATE, dtype=np.int16))
except Exception as e:
print(f"TTS Error: {e}")
return (SAMPLE_RATE, np.zeros(SAMPLE_RATE, dtype=np.int16))
def process_conversation(self, audio_input, chat_history):
"""Main pipeline: Speech -> Emotion -> LLM -> Speech"""
if audio_input is None:
return chat_history, None, ""
try:
# Step 1: Speech to Text
user_text = self.transcribe(audio_input)
if not user_text.strip():
return chat_history, None, "No speech detected."
# Step 2: Emotion Recognition
emotion = self.predict_emotion()
# Step 3: Generate Response
ai_response = self.generate_response(user_text, emotion)
# Step 4: Text to Speech
audio_response = self.synthesize(ai_response)
# Update chat history
chat_history.append([user_text, ai_response])
# Memory cleanup
if DEVICE == "cuda":
torch.cuda.empty_cache()
gc.collect()
return chat_history, audio_response, f"You said: {user_text} (detected emotion: {emotion})"
except Exception as e:
error_msg = f"Error processing conversation: {e}"
print(error_msg)
return chat_history, None, error_msg
# Initialize AI system
print("π Starting Conversational AI...")
ai_system = ConversationalAI()
# Gradio Interface
def create_interface():
with gr.Blocks(
title="Emotion-Aware Conversational AI",
theme=gr.themes.Soft()
) as demo:
gr.HTML("""
<div style="text-align: center; margin-bottom: 2rem;">
<h1>π€ Emotion-Aware Conversational AI</h1>
<p>Speak naturally and get intelligent responses with emotion recognition</p>
</div>
""")
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(
label="Conversation History",
height=400,
show_copy_button=True
)
audio_input = gr.Audio(
label="π€ Speak to AI",
sources=["microphone"],
type="numpy",
format="wav"
)
with gr.Row():
submit_btn = gr.Button("π¬ Process Speech", variant="primary", scale=2)
clear_btn = gr.Button("ποΈ Clear Chat", variant="secondary", scale=1)
with gr.Column(scale=1):
audio_output = gr.Audio(
label="π AI Response",
type="numpy",
autoplay=True
)
status_display = gr.Textbox(
label="π Status",
lines=3,
interactive=False
)
gr.HTML(f"""
<div style="padding: 1rem; background: #f0f9ff; border-radius: 0.5rem;">
<h3>π§ System Info</h3>
<p><strong>Device:</strong> {DEVICE.upper()}</p>
<p><strong>PyTorch:</strong> {torch.__version__}</p>
<p><strong>Models:</strong> Parakeet + DialoGPT + TTS</p>
<p><strong>Features:</strong> Emotion Recognition</p>
</div>
""")
def process_audio(audio, history):
return ai_system.process_conversation(audio, history)
def clear_conversation():
if DEVICE == "cuda":
torch.cuda.empty_cache()
gc.collect()
return [], None, "Conversation cleared."
# Event handlers
submit_btn.click(
fn=process_audio,
inputs=[audio_input, chatbot],
outputs=[chatbot, audio_output, status_display]
)
clear_btn.click(
fn=clear_conversation,
outputs=[chatbot, audio_output, status_display]
)
audio_input.change(
fn=process_audio,
inputs=[audio_input, chatbot],
outputs=[chatbot, audio_output, status_display]
)
return demo
# Launch application
if __name__ == "__main__":
print("π Creating interface...")
demo = create_interface()
print("π Launching application...")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True
)
|