File size: 6,927 Bytes
3baf333
7c0b46d
 
 
557b7cf
7c0b46d
 
23c19e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc6ab46
23c19e0
dc6ab46
23c19e0
 
7c0b46d
 
 
 
 
 
 
23c19e0
7c0b46d
23c19e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c0b46d
 
9b0e653
7c0b46d
 
9b0e653
7c0b46d
 
 
9b0e653
7c0b46d
 
 
 
 
 
23c19e0
 
dc6ab46
23c19e0
 
dc6ab46
23c19e0
 
 
 
 
 
 
 
10493d1
dc6ab46
23c19e0
 
dc6ab46
23c19e0
 
 
10493d1
dc6ab46
 
 
23c19e0
 
 
 
 
 
 
7c0b46d
 
23c19e0
 
dc6ab46
23c19e0
 
 
 
7c0b46d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23c19e0
 
3baf333
23c19e0
 
7c0b46d
23c19e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc6ab46
 
23c19e0
 
 
 
 
 
 
 
 
3baf333
23c19e0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import streamlit as st
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
from PyPDF2 import PdfReader
import docx
import re
from typing import Dict

def parse_cv_sections(text: str) -> Dict[str, str]:
    """Parse CV text into structured sections."""
    sections = {
        'contact': '',
        'education': '',
        'experience': '',
        'skills': '',
        'projects': '',
    }
    
    # Common section headers in CVs
    section_patterns = {
        'contact': r'(?i)(contact|personal\s+information|profile)',
        'education': r'(?i)(education|academic|qualification)',
        'experience': r'(?i)(experience|work|employment|professional)',
        'skills': r'(?i)(skills|technical skills|competencies)',
        'projects': r'(?i)(projects|personal projects)',
    }
    
    # Split text into lines
    lines = text.split('\n')
    current_section = None
    
    for line in lines:
        line = line.strip()
        if not line:
            continue
            
        # Check if line is a section header
        for section, pattern in section_patterns.items():
            if re.search(pattern, line, re.IGNORECASE):
                current_section = section
                break
                
        if current_section and line:
            sections[current_section] += line + '\n'
    
    return sections

def extract_cv_text(file):
    """Extract text from PDF or DOCX CV files."""
    if file is None:
        return "No CV uploaded"
    
    file_ext = os.path.splitext(file.name)[1].lower()
    text = ""
    
    try:
        if file_ext == '.pdf':
            reader = PdfReader(file)
            for page in reader.pages:
                text += page.extract_text()
        
        elif file_ext == '.docx':
            doc = docx.Document(file)
            for paragraph in doc.paragraphs:
                text += paragraph.text + '\n'
        else:
            return "Unsupported file format. Please upload PDF or DOCX files."
        
        # Parse the CV into sections
        sections = parse_cv_sections(text)
        return sections
        
    except Exception as e:
        return f"Error processing file: {str(e)}"

# Replace 'your_huggingface_token' with your actual Hugging Face access token
access_token = os.getenv('API_KEY')

# Initialize the tokenizer and model with the Hugging Face access token
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it", use_auth_token=access_token)
model = AutoModelForCausalLM.from_pretrained(
    "google/gemma-2b-it",
    torch_dtype=torch.bfloat16,
    use_auth_token=access_token
)
model.eval()  # Set the model to evaluation mode

# Initialize the inference client (if needed for other API-based tasks)
client = InferenceClient(token=access_token)

def create_email_prompt(job_description: str, cv_sections: Dict[str, str]) -> str:
    """Create a detailed prompt for email generation."""
    return f"""Job Description:
{job_description}

Your CV Details:
Experience:
{cv_sections['experience']}

Skills:
{cv_sections['skills']}

Education:
{cv_sections['education']}

Instructions: Write a professional job application email following these guidelines:
1. Start with a proper greeting
2. First paragraph: Express interest in the position and mention how you found it
3. Second paragraph: Highlight 2-3 most relevant experiences from your CV that match the job requirements
4. Third paragraph: Mention specific skills that align with the role
5. Closing paragraph: Express enthusiasm for an interview and provide contact information
6. End with a professional closing

Keep the tone professional, confident, and enthusiastic. Be concise but impactful.

Email:"""

def conversation_predict(input_text: str, cv_sections: Dict[str, str]):
    """Generate a response using the model with improved prompting."""
    prompt = create_email_prompt(input_text, cv_sections)
    
    # Tokenize the input text
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids

    # Generate a response with the model
    outputs = model.generate(
        input_ids,
        max_new_tokens=2048,
        temperature=0.7,
        top_p=0.95,
        do_sample=True
    )

    # Decode and return the generated response
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

def respond(
    message: str,
    history: list[tuple[str, str]],
    system_message: str,
    cv_file,
    max_tokens: int,
    temperature: float,
    top_p: float,
):
    """Generate a response for a multi-turn chat conversation."""
    # Extract CV text and update system message
    cv_text = extract_cv_text(cv_file) if cv_file else "No CV provided"
    
    updated_system_message = f"""Task: Write a professional job application email.

CV Summary:
{cv_text}

{system_message}"""

    messages = [{"role": "system", "content": updated_system_message}]

    for user_input, assistant_reply in history:
        if user_input:
            messages.append({"role": "user", "content": user_input})
        if assistant_reply:
            messages.append({"role": "assistant", "content": assistant_reply})

    messages.append({"role": "user", "content": message})

    response = ""

    for message_chunk in client.chat_completion(
        messages=messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message_chunk["choices"][0]["delta"].get("content", "")
        response += token
        yield response

# Streamlit UI section
st.title("AI Job Application Email Generator")

# Add tabs for different sections
tab1, tab2 = st.tabs(["Generate Email", "View CV Details"])

with tab1:
    # CV file upload
    cv_file = st.file_uploader("Upload CV (PDF or DOCX)", type=["pdf", "docx"])
    
    if cv_file:
        cv_sections = extract_cv_text(cv_file)
        if isinstance(cv_sections, dict):
            st.success("CV uploaded and parsed successfully!")
        else:
            st.error(cv_sections)  # Show error message if parsing failed
    
    # Job description input
    st.markdown("### Job Description")
    message = st.text_area("Paste the job description here:", height=200)
    
    # Generate button
    if st.button("Generate Email"):
        if message and cv_file and isinstance(cv_sections, dict):
            response = conversation_predict(message, cv_sections)
            st.markdown("### Generated Email:")
            st.markdown(response)
        else:
            st.warning("Please upload a CV and enter a job description.")

with tab2:
    if cv_file and isinstance(cv_sections, dict):
        st.markdown("### Parsed CV Details")
        for section, content in cv_sections.items():
            with st.expander(f"{section.title()}"):
                st.text(content)
    else:
        st.info("Upload a CV to view parsed details")