Spaces:
Sleeping
Sleeping
File size: 8,565 Bytes
3baf333 7c0b46d 557b7cf 7c0b46d 23c19e0 9d2fe8f 23c19e0 7c0b46d 23c19e0 7c0b46d 23c19e0 2d88e43 23c19e0 2d88e43 23c19e0 2d88e43 23c19e0 7c0b46d 9b0e653 7c0b46d 2d88e43 23c19e0 dc6ab46 23c19e0 dc6ab46 2d88e43 10493d1 dc6ab46 23c19e0 dc6ab46 23c19e0 934f12d 23c19e0 10493d1 934f12d dc6ab46 23c19e0 2d88e43 204d33b 2d88e43 23c19e0 204d33b b524841 7c0b46d 9d2fe8f 23c19e0 3baf333 2d88e43 9a4471a 204d33b 9d54669 23c19e0 50fac90 2d88e43 204d33b b524841 8241f94 b524841 23c19e0 9d2fe8f 23c19e0 9d54669 9a4471a 2d88e43 9a4471a 2d88e43 9a4471a 2d88e43 9a4471a 2d88e43 9a4471a 23c19e0 2d88e43 3baf333 2d88e43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import streamlit as st
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
from PyPDF2 import PdfReader
import docx
import re
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from email.mime.base import MIMEBase
from email import encoders
from typing import Dict
def extract_cv_text(file):
"""Extract text from PDF or DOCX CV files."""
if file is None:
return "No CV uploaded"
file_ext = os.path.splitext(file.name)[1].lower()
text = ""
try:
if file_ext == '.pdf':
reader = PdfReader(file)
for page in reader.pages:
text += page.extract_text()
elif file_ext == '.docx':
doc = docx.Document(file)
for paragraph in doc.paragraphs:
text += paragraph.text + '\n'
else:
return "Unsupported file format. Please upload PDF or DOCX files."
return text # Return the full text instead of parsed sections
except Exception as e:
return f"Error processing file: {str(e)}"
# Replace 'your_huggingface_token' with your actual Hugging Face access token
access_token = os.getenv('API_KEY')
# Initialize the inference client (if needed for other API-based tasks)
client = InferenceClient(token=access_token)
def create_email_prompt(job_description: str, cv_text: str) -> str:
"""Create a detailed prompt for email generation."""
return f"""Job Description:
{job_description}
Your CV Details:
{cv_text}
Instructions: Write a professional job application email following these guidelines:
1. Start with a proper greeting
2. First paragraph: Express interest in the position and mention how you found it
3. Second paragraph: Highlight 2-3 most relevant experiences from your CV that match the job requirements
4. Third paragraph: Mention specific skills that align with the role
5. Closing paragraph: Express enthusiasm for an interview. Use the exact contact information provided in the CV - do not use placeholders like [phone] or [email]
6. End with a professional closing
Important: Use the exact contact details and information from the CV. Do not generate or make up any placeholder information.
Keep the tone professional, confident, and enthusiastic. Be concise but impactful.
Email:"""
def conversation_predict(input_text: str, cv_text: str):
"""Generate a response using the model with streaming output."""
prompt = create_email_prompt(input_text, cv_text)
# Use the streaming API
try:
for response in client.text_generation(
model="google/gemma-2b-it",
prompt=prompt,
max_new_tokens=512,
temperature=0.7,
top_p=0.95,
stream=True
):
# The streaming response returns text directly
yield response
except Exception as e:
st.error(f"Error generating response: {str(e)}")
yield ""
def respond(
message: str,
history: list[tuple[str, str]],
system_message: str,
cv_file,
max_tokens: int,
temperature: float,
top_p: float,
):
"""Generate a response for a multi-turn chat conversation."""
# Extract CV text and update system message
cv_text = extract_cv_text(cv_file) if cv_file else "No CV provided"
updated_system_message = f"""Task: Write a professional job application email.
CV Summary:
{cv_text}
{system_message}"""
messages = [{"role": "system", "content": updated_system_message}]
for user_input, assistant_reply in history:
if user_input:
messages.append({"role": "user", "content": user_input})
if assistant_reply:
messages.append({"role": "assistant", "content": assistant_reply})
messages.append({"role": "user", "content": message})
response = ""
for message_chunk in client.chat_completion(
messages=messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message_chunk["choices"][0]["delta"].get("content", "")
response += token
yield response
# Function to send the email with attachment
def send_email(sender_email: str, receiver_email: str, subject: str, body: str, attachment_path: str):
"""Send email with CV attachment."""
try:
msg = MIMEMultipart()
msg['From'] = sender_email
msg['To'] = receiver_email
msg['Subject'] = subject
msg.attach(MIMEText(body, 'plain'))
# Attach the CV file
if attachment_path:
attachment = open(attachment_path, "rb")
part = MIMEBase('application', 'octet-stream')
part.set_payload(attachment.read())
encoders.encode_base64(part)
part.add_header('Content-Disposition', f'attachment; filename={os.path.basename(attachment_path)}')
msg.attach(part)
# Set up the server and send the email
server = smtplib.SMTP('smtp.gmail.com', 587)
server.starttls()
server.login(sender_email, os.getenv('EMAIL_PASSWORD')) # Replace with your email credentials
text = msg.as_string()
server.sendmail(sender_email, receiver_email, text)
server.quit()
st.success("Email sent successfully!")
except Exception as e:
st.error(f"Error sending email: {str(e)}")
# Streamlit UI section
st.title("AI Job Application Email Generator")
def update_ui(message, cv_file, cv_text):
"""Handle the UI updates for email generation."""
# Create placeholder for the generated email
email_placeholder = st.empty()
email_text = "" # Initialize email_text before use
# Generate button
if st.button("Generate Email", key="generate_button"):
if message and cv_file and isinstance(cv_text, str) and not cv_text.startswith("Error"):
email_text = ""
# Stream the response
try:
with st.spinner('Generating your application email...'):
for chunk in conversation_predict(message, cv_text):
if chunk:
email_text += chunk
# Update the text area with each chunk, using timestamp in key
email_placeholder.text_area(
"Generated Email",
value=email_text,
height=400
)
st.success('Email generated successfully!')
except Exception as e:
st.error(f"Error during email generation: {str(e)}")
else:
st.warning("Please upload a CV and enter a job description.")
# Email input fields
st.markdown("### Sender & Receiver Information")
sender_email = st.text_input("Sender's Email Address")
receiver_email = st.text_input("Receiver's Email Address")
# Email subject
subject = st.text_input("Subject", value="Job Application for [Position Name]")
# Option to edit the generated email
email_body = st.text_area("Edit the Generated Email (if needed)", value=email_text, height=400)
# Send email button
if st.button("Send Email"):
if sender_email and receiver_email and email_body:
send_email(sender_email, receiver_email, subject, email_body, cv_file.name)
# Add tabs for different sections
tab1, tab2 = st.tabs(["Generate Email", "View CV Details"])
with tab1:
# CV file upload
cv_file = st.file_uploader("Upload CV (PDF or DOCX)", type=["pdf", "docx"])
if cv_file:
cv_text = extract_cv_text(cv_file)
if isinstance(cv_text, str) and not cv_text.startswith("Error"):
st.success("CV uploaded successfully!")
else:
st.error(cv_text)
cv_text = None
else:
cv_text = None
# Job description input
st.markdown("### Job Description")
message = st.text_area("Paste the job description here:", height=200)
# Call the updated UI function with parameters
update_ui(message, cv_file, cv_text)
with tab2:
if cv_file and isinstance(cv_text, str) and not cv_text.startswith("Error"):
st.markdown("### CV Content")
st.text_area("Full CV Text", value=cv_text, height=400)
else:
st.info("Upload a CV to view content")
|