AppyJob / app.py
Dhahlan2000's picture
Reduce max_new_tokens in model generation from 2048 to 512 in app.py to optimize response length and improve performance. This change aims to enhance the efficiency of the conversation prediction function.
02386cb
raw
history blame
7.5 kB
import streamlit as st
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
from PyPDF2 import PdfReader
import docx
import re
from typing import Dict
def parse_cv_sections(text: str) -> Dict[str, str]:
"""Parse CV text into structured sections."""
sections = {
'contact': '',
'education': '',
'experience': '',
'skills': '',
'projects': '',
'other': '', # Added other section for miscellaneous content
}
# Common section headers in CVs
section_patterns = {
'contact': r'(?i)(contact|personal\s+information|profile)',
'education': r'(?i)(education|academic|qualification)',
'experience': r'(?i)(experience|work|employment|professional)',
'skills': r'(?i)(skills|technical skills|competencies)',
'projects': r'(?i)(projects|personal projects)',
}
# Split text into lines
lines = text.split('\n')
current_section = None
for line in lines:
line = line.strip()
if not line:
continue
# Check if line is a section header
section_found = False
for section, pattern in section_patterns.items():
if re.search(pattern, line, re.IGNORECASE):
current_section = section
section_found = True
break
if current_section and line:
# If line doesn't match any known section and we haven't found a section yet,
# put it in 'other'
if not section_found and current_section is None:
sections['other'] += line + '\n'
else:
sections[current_section] += line + '\n'
return sections
def extract_cv_text(file):
"""Extract text from PDF or DOCX CV files."""
if file is None:
return "No CV uploaded"
file_ext = os.path.splitext(file.name)[1].lower()
text = ""
try:
if file_ext == '.pdf':
reader = PdfReader(file)
for page in reader.pages:
text += page.extract_text()
elif file_ext == '.docx':
doc = docx.Document(file)
for paragraph in doc.paragraphs:
text += paragraph.text + '\n'
else:
return "Unsupported file format. Please upload PDF or DOCX files."
# Parse the CV into sections
sections = parse_cv_sections(text)
return sections
except Exception as e:
return f"Error processing file: {str(e)}"
# Replace 'your_huggingface_token' with your actual Hugging Face access token
access_token = os.getenv('API_KEY')
# Initialize the tokenizer and model with the Hugging Face access token
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it", use_auth_token=access_token)
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2b-it",
torch_dtype=torch.bfloat16,
use_auth_token=access_token
)
model.eval() # Set the model to evaluation mode
# Initialize the inference client (if needed for other API-based tasks)
client = InferenceClient(token=access_token)
def create_email_prompt(job_description: str, cv_sections: Dict[str, str]) -> str:
"""Create a detailed prompt for email generation."""
return f"""Based on the following information, generate only a professional job application email.
Job Description:
{job_description}
CV Details:
Experience:
{cv_sections['experience']}
Skills:
{cv_sections['skills']}
Education:
{cv_sections['education']}
Additional Information:
{cv_sections['other']}
Contact Information:
{cv_sections['contact']}
Guidelines:
1. Start with a proper greeting
2. First paragraph: Express interest in the position and mention how you found it
3. Second paragraph: Highlight 2-3 most relevant experiences that match the job requirements
4. Third paragraph: Mention specific skills that align with the role
5. Closing paragraph: Express enthusiasm for an interview and provide contact information
6. End with a professional closing
Generate only the email, without any additional text or explanations."""
def conversation_predict(input_text: str, cv_sections: Dict[str, str]):
"""Generate a response using the model with improved prompting."""
prompt = create_email_prompt(input_text, cv_sections)
# Tokenize the input text
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
# Generate a response with the model
outputs = model.generate(
input_ids,
max_new_tokens=512,
temperature=0.7,
top_p=0.95,
do_sample=True
)
# Decode and return the generated response
return tokenizer.decode(outputs[0], skip_special_tokens=True)
def respond(
message: str,
history: list[tuple[str, str]],
system_message: str,
cv_file,
max_tokens: int,
temperature: float,
top_p: float,
):
"""Generate a response for a multi-turn chat conversation."""
# Extract CV text and update system message
cv_text = extract_cv_text(cv_file) if cv_file else "No CV provided"
updated_system_message = f"""Task: Write a professional job application email.
CV Summary:
{cv_text}
{system_message}"""
messages = [{"role": "system", "content": updated_system_message}]
for user_input, assistant_reply in history:
if user_input:
messages.append({"role": "user", "content": user_input})
if assistant_reply:
messages.append({"role": "assistant", "content": assistant_reply})
messages.append({"role": "user", "content": message})
response = ""
for message_chunk in client.chat_completion(
messages=messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message_chunk["choices"][0]["delta"].get("content", "")
response += token
yield response
# Streamlit UI section
st.title("AI Job Application Email Generator")
# Add tabs for different sections
tab1, tab2 = st.tabs(["Generate Email", "View CV Details"])
with tab1:
# CV file upload
cv_file = st.file_uploader("Upload CV (PDF or DOCX)", type=["pdf", "docx"])
if cv_file:
cv_sections = extract_cv_text(cv_file)
if isinstance(cv_sections, dict):
st.success("CV uploaded and parsed successfully!")
else:
st.error(cv_sections) # Show error message if parsing failed
# Job description input
st.markdown("### Job Description")
message = st.text_area("Paste the job description here:", height=200)
# Generate button
if st.button("Generate Email"):
if message and cv_file and isinstance(cv_sections, dict):
response = conversation_predict(message, cv_sections)
# Remove any potential prompt text from the response
email_text = response.split("Email:")[-1].strip()
st.text_area("Generated Email", email_text, height=400)
else:
st.warning("Please upload a CV and enter a job description.")
with tab2:
if cv_file and isinstance(cv_sections, dict):
st.markdown("### Parsed CV Details")
for section, content in cv_sections.items():
with st.expander(f"{section.title()}"):
st.text(content)
else:
st.info("Upload a CV to view parsed details")