AppyJob / app.py
Dhahlan2000's picture
Update app.py to clarify email generation instructions by specifying the use of exact contact details from the CV, eliminating placeholders. This change enhances the professionalism and accuracy of the generated job application emails, ensuring users provide the correct information for better communication.
934f12d
raw
history blame
6.24 kB
import streamlit as st
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
from PyPDF2 import PdfReader
import docx
import re
from typing import Dict
def extract_cv_text(file):
"""Extract text from PDF or DOCX CV files."""
if file is None:
return "No CV uploaded"
file_ext = os.path.splitext(file.name)[1].lower()
text = ""
try:
if file_ext == '.pdf':
reader = PdfReader(file)
for page in reader.pages:
text += page.extract_text()
elif file_ext == '.docx':
doc = docx.Document(file)
for paragraph in doc.paragraphs:
text += paragraph.text + '\n'
else:
return "Unsupported file format. Please upload PDF or DOCX files."
return text # Return the full text instead of parsed sections
except Exception as e:
return f"Error processing file: {str(e)}"
# Replace 'your_huggingface_token' with your actual Hugging Face access token
access_token = os.getenv('API_KEY')
# Initialize the inference client (if needed for other API-based tasks)
client = InferenceClient(token=access_token)
def create_email_prompt(job_description: str, cv_text: str) -> str:
"""Create a detailed prompt for email generation."""
return f"""Job Description:
{job_description}
Your CV Details:
{cv_text}
Instructions: Write a professional job application email following these guidelines:
1. Start with a proper greeting
2. First paragraph: Express interest in the position and mention how you found it
3. Second paragraph: Highlight 2-3 most relevant experiences from your CV that match the job requirements
4. Third paragraph: Mention specific skills that align with the role
5. Closing paragraph: Express enthusiasm for an interview. Use the exact contact information provided in the CV - do not use placeholders like [phone] or [email]
6. End with a professional closing
Important: Use the exact contact details and information from the CV. Do not generate or make up any placeholder information.
Keep the tone professional, confident, and enthusiastic. Be concise but impactful.
Email:"""
def conversation_predict(input_text: str, cv_text: str):
"""Generate a response using the model with streaming output."""
prompt = create_email_prompt(input_text, cv_text)
# Use the streaming API
try:
for response in client.text_generation(
model="google/gemma-2b-it",
prompt=prompt,
max_new_tokens=512,
temperature=0.7,
top_p=0.95,
stream=True
):
# The streaming response returns text directly
yield response
except Exception as e:
st.error(f"Error generating response: {str(e)}")
yield ""
def respond(
message: str,
history: list[tuple[str, str]],
system_message: str,
cv_file,
max_tokens: int,
temperature: float,
top_p: float,
):
"""Generate a response for a multi-turn chat conversation."""
# Extract CV text and update system message
cv_text = extract_cv_text(cv_file) if cv_file else "No CV provided"
updated_system_message = f"""Task: Write a professional job application email.
CV Summary:
{cv_text}
{system_message}"""
messages = [{"role": "system", "content": updated_system_message}]
for user_input, assistant_reply in history:
if user_input:
messages.append({"role": "user", "content": user_input})
if assistant_reply:
messages.append({"role": "assistant", "content": assistant_reply})
messages.append({"role": "user", "content": message})
response = ""
for message_chunk in client.chat_completion(
messages=messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message_chunk["choices"][0]["delta"].get("content", "")
response += token
yield response
# Streamlit UI section
st.title("AI Job Application Email Generator")
def update_ui(message, cv_file, cv_text):
"""Handle the UI updates for email generation."""
# Create placeholder for the generated email
email_placeholder = st.empty()
# Generate button
if st.button("Generate Email", key="generate_button"):
if message and cv_file and isinstance(cv_text, str) and not cv_text.startswith("Error"):
email_text = ""
# Stream the response
try:
for chunk in conversation_predict(message, cv_text):
if chunk:
email_text += chunk
# Update the text area with each chunk, using timestamp in key
email_placeholder.text_area(
"Generated Email",
value=email_text,
height=400
)
except Exception as e:
st.error(f"Error during email generation: {str(e)}")
else:
st.warning("Please upload a CV and enter a job description.")
# Add tabs for different sections
tab1, tab2 = st.tabs(["Generate Email", "View CV Details"])
with tab1:
# CV file upload
cv_file = st.file_uploader("Upload CV (PDF or DOCX)", type=["pdf", "docx"])
if cv_file:
cv_text = extract_cv_text(cv_file)
if isinstance(cv_text, str) and not cv_text.startswith("Error"):
st.success("CV uploaded successfully!")
else:
st.error(cv_text)
cv_text = None
else:
cv_text = None
# Job description input
st.markdown("### Job Description")
message = st.text_area("Paste the job description here:", height=200)
# Call the updated UI function with parameters
update_ui(message, cv_file, cv_text)
with tab2:
if cv_file and isinstance(cv_text, str) and not cv_text.startswith("Error"):
st.markdown("### CV Content")
st.text_area("Full CV Text", value=cv_text, height=400)
else:
st.info("Upload a CV to view content")