Spaces:
Sleeping
Sleeping
Commit
·
3b9b6a5
1
Parent(s):
86fa7e0
Initial commit with project setup and basic structure.
Browse files- app.py +200 -0
- requirements.txt +0 -0
app.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
import os
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent, AgentOutputParser
|
6 |
+
from langchain.schema import AgentAction, AgentFinish, HumanMessage
|
7 |
+
from langchain.prompts import BaseChatPromptTemplate
|
8 |
+
from langchain.tools import Tool
|
9 |
+
from langchain.memory import ConversationBufferWindowMemory
|
10 |
+
from transformers import pipeline
|
11 |
+
from typing import List, Union
|
12 |
+
import re
|
13 |
+
|
14 |
+
# Load environment variables from .env
|
15 |
+
load_dotenv()
|
16 |
+
|
17 |
+
# Job API keys and endpoints
|
18 |
+
JOB_API_KEY = os.getenv("JOB_API_KEY") # Add your job API key here if required
|
19 |
+
JOBS_API_URL = "https://jobs.github.com/positions.json" # Example API endpoint (replace with an actual one)
|
20 |
+
|
21 |
+
# Function to find global job openings
|
22 |
+
def find_global_jobs():
|
23 |
+
try:
|
24 |
+
response = requests.get(JOBS_API_URL)
|
25 |
+
if response.status_code == 200:
|
26 |
+
jobs = response.json()
|
27 |
+
return [
|
28 |
+
{
|
29 |
+
"title": job["title"],
|
30 |
+
"company": job["company"],
|
31 |
+
"location": job["location"],
|
32 |
+
"url": job["url"]
|
33 |
+
} for job in jobs
|
34 |
+
]
|
35 |
+
else:
|
36 |
+
return {"error": "Unable to fetch job data."}
|
37 |
+
except Exception as e:
|
38 |
+
return {"error": str(e)}
|
39 |
+
|
40 |
+
# Function to find remote jobs
|
41 |
+
def find_remote_jobs():
|
42 |
+
try:
|
43 |
+
response = requests.get(f"{JOBS_API_URL}?location=remote")
|
44 |
+
if response.status_code == 200:
|
45 |
+
jobs = response.json()
|
46 |
+
return [
|
47 |
+
{
|
48 |
+
"title": job["title"],
|
49 |
+
"company": job["company"],
|
50 |
+
"url": job["url"]
|
51 |
+
} for job in jobs
|
52 |
+
]
|
53 |
+
else:
|
54 |
+
return {"error": "Unable to fetch remote job data."}
|
55 |
+
except Exception as e:
|
56 |
+
return {"error": str(e)}
|
57 |
+
|
58 |
+
# Function to find jobs near a location
|
59 |
+
def find_jobs_near_location(location):
|
60 |
+
try:
|
61 |
+
response = requests.get(f"{JOBS_API_URL}?location={location}")
|
62 |
+
if response.status_code == 200:
|
63 |
+
jobs = response.json()
|
64 |
+
return [
|
65 |
+
{
|
66 |
+
"title": job["title"],
|
67 |
+
"company": job["company"],
|
68 |
+
"location": job["location"],
|
69 |
+
"url": job["url"]
|
70 |
+
} for job in jobs
|
71 |
+
]
|
72 |
+
else:
|
73 |
+
return {"error": "Unable to fetch job data for location."}
|
74 |
+
except Exception as e:
|
75 |
+
return {"error": str(e)}
|
76 |
+
|
77 |
+
# Define LangChain tools
|
78 |
+
global_jobs_tool = Tool(
|
79 |
+
name="Global Job Finder",
|
80 |
+
func=find_global_jobs,
|
81 |
+
description="Find all job openings around the world."
|
82 |
+
)
|
83 |
+
|
84 |
+
remote_jobs_tool = Tool(
|
85 |
+
name="Remote Job Finder",
|
86 |
+
func=find_remote_jobs,
|
87 |
+
description="Find remote job openings."
|
88 |
+
)
|
89 |
+
|
90 |
+
local_jobs_tool = Tool(
|
91 |
+
name="Local Job Finder",
|
92 |
+
func=find_jobs_near_location,
|
93 |
+
description="Find job openings near a specified location. Input should be a city or region name."
|
94 |
+
)
|
95 |
+
|
96 |
+
# Set up the tools
|
97 |
+
tools = [
|
98 |
+
global_jobs_tool,
|
99 |
+
remote_jobs_tool,
|
100 |
+
local_jobs_tool
|
101 |
+
]
|
102 |
+
|
103 |
+
# Set up a prompt template with history
|
104 |
+
template_with_history = """You are JobSearchGPT, an AI assistant specialized in finding job openings. Answer the following questions as best you can. You have access to the following tools:
|
105 |
+
|
106 |
+
{tools}
|
107 |
+
|
108 |
+
Use the following format:
|
109 |
+
|
110 |
+
Question: the input question you must answer
|
111 |
+
Thought: you should always think about what to do
|
112 |
+
Action: the action to take, should be one of [{tool_names}]
|
113 |
+
Action Input: the input to the action
|
114 |
+
Observation: the result of the action
|
115 |
+
... (this Thought/Action/Action Input/Observation can repeat N times)
|
116 |
+
Thought: I now know the final answer
|
117 |
+
Final Answer: the final answer to the original input question
|
118 |
+
|
119 |
+
Begin! Remember to give detailed, informative answers
|
120 |
+
|
121 |
+
Previous conversation history:
|
122 |
+
{history}
|
123 |
+
|
124 |
+
New question: {input}
|
125 |
+
{agent_scratchpad}"""
|
126 |
+
|
127 |
+
# Set up the prompt template
|
128 |
+
class CustomPromptTemplate(BaseChatPromptTemplate):
|
129 |
+
template: str
|
130 |
+
tools: List[Tool]
|
131 |
+
|
132 |
+
def format_messages(self, **kwargs) -> str:
|
133 |
+
intermediate_steps = kwargs.pop("intermediate_steps")
|
134 |
+
thoughts = ""
|
135 |
+
for action, observation in intermediate_steps:
|
136 |
+
thoughts += action.log
|
137 |
+
thoughts += f"\nObservation: {observation}\nThought: "
|
138 |
+
|
139 |
+
kwargs["agent_scratchpad"] = thoughts
|
140 |
+
kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in self.tools])
|
141 |
+
kwargs["tool_names"] = ", ".join([tool.name for tool in self.tools])
|
142 |
+
formatted = self.template.format(**kwargs)
|
143 |
+
return [HumanMessage(content=formatted)]
|
144 |
+
|
145 |
+
prompt_with_history = CustomPromptTemplate(
|
146 |
+
template=template_with_history,
|
147 |
+
tools=tools,
|
148 |
+
input_variables=["input", "intermediate_steps", "history"]
|
149 |
+
)
|
150 |
+
|
151 |
+
# Custom output parser
|
152 |
+
class CustomOutputParser(AgentOutputParser):
|
153 |
+
def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
|
154 |
+
if "Final Answer:" in llm_output:
|
155 |
+
return AgentFinish(
|
156 |
+
return_values={"output": llm_output.split("Final Answer:")[-1].strip()},
|
157 |
+
log=llm_output,
|
158 |
+
)
|
159 |
+
regex = r"Action: (.*?)[\n]*Action Input:[\s]*(.*)"
|
160 |
+
match = re.search(regex, llm_output, re.DOTALL)
|
161 |
+
if not match:
|
162 |
+
raise ValueError(f"Could not parse LLM output: `{llm_output}`")
|
163 |
+
action = match.group(1).strip()
|
164 |
+
action_input = match.group(2)
|
165 |
+
return AgentAction(tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output)
|
166 |
+
|
167 |
+
output_parser = CustomOutputParser()
|
168 |
+
|
169 |
+
# Initialize HuggingFace pipeline
|
170 |
+
pipe = pipeline("text-generation", model="gpt-neo-2.7B") # Replace with a suitable model
|
171 |
+
|
172 |
+
# LLM chain
|
173 |
+
llm_chain = LLMChain(llm=pipe, prompt=prompt_with_history)
|
174 |
+
tool_names = [tool.name for tool in tools]
|
175 |
+
agent = LLMSingleActionAgent(
|
176 |
+
llm_chain=llm_chain,
|
177 |
+
output_parser=output_parser,
|
178 |
+
stop=["\nObservation:"],
|
179 |
+
allowed_tools=tool_names
|
180 |
+
)
|
181 |
+
|
182 |
+
memory = ConversationBufferWindowMemory(k=2)
|
183 |
+
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory)
|
184 |
+
|
185 |
+
# Streamlit app
|
186 |
+
st.title("Job Search Helper Agent")
|
187 |
+
|
188 |
+
query = st.text_input("Enter your query:")
|
189 |
+
|
190 |
+
if st.button("Submit"):
|
191 |
+
if query:
|
192 |
+
st.write("Debug: User Query ->", query)
|
193 |
+
with st.spinner("Processing..."):
|
194 |
+
try:
|
195 |
+
# Run the agent and get the response
|
196 |
+
response = agent_executor.run(query) # Correct method is `run()`
|
197 |
+
st.success("Response:")
|
198 |
+
st.write(response)
|
199 |
+
except Exception as e:
|
200 |
+
st.error(f"An error occurred: {e}")
|
requirements.txt
ADDED
File without changes
|