Dhahlan2000 commited on
Commit
7bf0f33
·
verified ·
1 Parent(s): e88305b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -3
app.py CHANGED
@@ -48,7 +48,20 @@ def transliterate_to_sinhala(text):
48
  # conv_model_name = "microsoft/Phi-3-mini-4k-instruct" # Use GPT-2 instead of the gated model
49
  # tokenizer = AutoTokenizer.from_pretrained(conv_model_name, trust_remote_code=True)
50
  # model = AutoModelForCausalLM.from_pretrained(conv_model_name, trust_remote_code=True).to(device)
51
- pipe1 = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0").to(device)
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
  # client = InferenceClient("google/gemma-2b-it")
54
 
@@ -72,8 +85,19 @@ def conversation_predict(text):
72
  # outputs = model.generate(**input_ids)
73
  # return tokenizer.decode(outputs[0])
74
 
75
- outputs = pipe1(text, max_new_tokens=256, temperature=0.7, top_k=50, top_p=0.95)
76
- return outputs[0]["generated_text"]
 
 
 
 
 
 
 
 
 
 
 
77
 
78
  def ai_predicted(user_input):
79
  if user_input.lower() == 'exit':
 
48
  # conv_model_name = "microsoft/Phi-3-mini-4k-instruct" # Use GPT-2 instead of the gated model
49
  # tokenizer = AutoTokenizer.from_pretrained(conv_model_name, trust_remote_code=True)
50
  # model = AutoModelForCausalLM.from_pretrained(conv_model_name, trust_remote_code=True).to(device)
51
+ # pipe1 = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0").to(device)
52
+
53
+ model = "tiiuae/falcon-7b-instruct"
54
+
55
+ tokenizer = AutoTokenizer.from_pretrained(model)
56
+ text_gen_pipeline = transformers.pipeline(
57
+ "text-generation",
58
+ model=model,
59
+ tokenizer=tokenizer,
60
+ torch_dtype=torch.bfloat16,
61
+ trust_remote_code=True,
62
+ device_map="auto",
63
+ )
64
+
65
 
66
  # client = InferenceClient("google/gemma-2b-it")
67
 
 
85
  # outputs = model.generate(**input_ids)
86
  # return tokenizer.decode(outputs[0])
87
 
88
+ # outputs = pipe1(text, max_new_tokens=256, temperature=0.7, top_k=50, top_p=0.95)
89
+ # return outputs[0]["generated_text"]
90
+
91
+ sequences = text_gen_pipeline(
92
+ text,
93
+ max_length=200,
94
+ do_sample=True,
95
+ top_k=10,
96
+ num_return_sequences=1,
97
+ eos_token_id=tokenizer.eos_token_id,
98
+ )
99
+ return sequences[0]['generated_text']
100
+
101
 
102
  def ai_predicted(user_input):
103
  if user_input.lower() == 'exit':