Dhahlan2000 commited on
Commit
870620e
·
verified ·
1 Parent(s): 9eed37e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -21
app.py CHANGED
@@ -50,18 +50,19 @@ def transliterate_to_sinhala(text):
50
  # model = AutoModelForCausalLM.from_pretrained(conv_model_name, trust_remote_code=True).to(device)
51
  # pipe1 = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0").to(device)
52
 
53
- model = "tiiuae/falcon-7b-instruct"
54
-
55
- tokenizer = AutoTokenizer.from_pretrained(model)
56
- text_gen_pipeline = pipeline(
57
- "text-generation",
58
- model=model,
59
- tokenizer=tokenizer,
60
- torch_dtype=torch.bfloat16,
61
- trust_remote_code=True,
62
- device_map="auto",
63
- )
64
 
 
65
 
66
  # client = InferenceClient("google/gemma-2b-it")
67
 
@@ -88,15 +89,16 @@ def conversation_predict(text):
88
  # outputs = pipe1(text, max_new_tokens=256, temperature=0.7, top_k=50, top_p=0.95)
89
  # return outputs[0]["generated_text"]
90
 
91
- sequences = text_gen_pipeline(
92
- text,
93
- max_length=200,
94
- do_sample=True,
95
- top_k=10,
96
- num_return_sequences=1,
97
- eos_token_id=tokenizer.eos_token_id,
98
- )
99
- return sequences[0]['generated_text']
 
100
 
101
 
102
  def ai_predicted(user_input):
@@ -133,7 +135,8 @@ def respond(
133
 
134
  messages.append({"role": "user", "content": message})
135
 
136
- response = ai_predicted(message)
 
137
 
138
  yield response
139
 
 
50
  # model = AutoModelForCausalLM.from_pretrained(conv_model_name, trust_remote_code=True).to(device)
51
  # pipe1 = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0").to(device)
52
 
53
+ # model = "tiiuae/falcon-7b-instruct"
54
+
55
+ # tokenizer = AutoTokenizer.from_pretrained(model)
56
+ # text_gen_pipeline = pipeline(
57
+ # "text-generation",
58
+ # model=model,
59
+ # tokenizer=tokenizer,
60
+ # torch_dtype=torch.bfloat16,
61
+ # trust_remote_code=True,
62
+ # device_map="auto",
63
+ # )
64
 
65
+ pipe1 = pipeline("text-generation", model="unsloth/gemma-2b-it")
66
 
67
  # client = InferenceClient("google/gemma-2b-it")
68
 
 
89
  # outputs = pipe1(text, max_new_tokens=256, temperature=0.7, top_k=50, top_p=0.95)
90
  # return outputs[0]["generated_text"]
91
 
92
+ # sequences = text_gen_pipeline(
93
+ # text,
94
+ # max_length=200,
95
+ # do_sample=True,
96
+ # top_k=10,
97
+ # num_return_sequences=1,
98
+ # eos_token_id=tokenizer.eos_token_id,
99
+ # )
100
+ # return sequences[0]['generated_text']
101
+
102
 
103
 
104
  def ai_predicted(user_input):
 
135
 
136
  messages.append({"role": "user", "content": message})
137
 
138
+ # response = ai_predicted(message)
139
+ response = pipe({"role": "user", "content": message})
140
 
141
  yield response
142