Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -50,18 +50,19 @@ def transliterate_to_sinhala(text):
|
|
50 |
# model = AutoModelForCausalLM.from_pretrained(conv_model_name, trust_remote_code=True).to(device)
|
51 |
# pipe1 = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0").to(device)
|
52 |
|
53 |
-
model = "tiiuae/falcon-7b-instruct"
|
54 |
-
|
55 |
-
tokenizer = AutoTokenizer.from_pretrained(model)
|
56 |
-
text_gen_pipeline = pipeline(
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
)
|
64 |
|
|
|
65 |
|
66 |
# client = InferenceClient("google/gemma-2b-it")
|
67 |
|
@@ -88,15 +89,16 @@ def conversation_predict(text):
|
|
88 |
# outputs = pipe1(text, max_new_tokens=256, temperature=0.7, top_k=50, top_p=0.95)
|
89 |
# return outputs[0]["generated_text"]
|
90 |
|
91 |
-
sequences = text_gen_pipeline(
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
)
|
99 |
-
return sequences[0]['generated_text']
|
|
|
100 |
|
101 |
|
102 |
def ai_predicted(user_input):
|
@@ -133,7 +135,8 @@ def respond(
|
|
133 |
|
134 |
messages.append({"role": "user", "content": message})
|
135 |
|
136 |
-
response = ai_predicted(message)
|
|
|
137 |
|
138 |
yield response
|
139 |
|
|
|
50 |
# model = AutoModelForCausalLM.from_pretrained(conv_model_name, trust_remote_code=True).to(device)
|
51 |
# pipe1 = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0").to(device)
|
52 |
|
53 |
+
# model = "tiiuae/falcon-7b-instruct"
|
54 |
+
|
55 |
+
# tokenizer = AutoTokenizer.from_pretrained(model)
|
56 |
+
# text_gen_pipeline = pipeline(
|
57 |
+
# "text-generation",
|
58 |
+
# model=model,
|
59 |
+
# tokenizer=tokenizer,
|
60 |
+
# torch_dtype=torch.bfloat16,
|
61 |
+
# trust_remote_code=True,
|
62 |
+
# device_map="auto",
|
63 |
+
# )
|
64 |
|
65 |
+
pipe1 = pipeline("text-generation", model="unsloth/gemma-2b-it")
|
66 |
|
67 |
# client = InferenceClient("google/gemma-2b-it")
|
68 |
|
|
|
89 |
# outputs = pipe1(text, max_new_tokens=256, temperature=0.7, top_k=50, top_p=0.95)
|
90 |
# return outputs[0]["generated_text"]
|
91 |
|
92 |
+
# sequences = text_gen_pipeline(
|
93 |
+
# text,
|
94 |
+
# max_length=200,
|
95 |
+
# do_sample=True,
|
96 |
+
# top_k=10,
|
97 |
+
# num_return_sequences=1,
|
98 |
+
# eos_token_id=tokenizer.eos_token_id,
|
99 |
+
# )
|
100 |
+
# return sequences[0]['generated_text']
|
101 |
+
|
102 |
|
103 |
|
104 |
def ai_predicted(user_input):
|
|
|
135 |
|
136 |
messages.append({"role": "user", "content": message})
|
137 |
|
138 |
+
# response = ai_predicted(message)
|
139 |
+
response = pipe({"role": "user", "content": message})
|
140 |
|
141 |
yield response
|
142 |
|