Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import ViTForImageClassification, ViTFeatureExtractor
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# Load model and feature extractor
|
7 |
+
model = ViTForImageClassification.from_pretrained('shahmi0519/fypvit', num_labels=30, ignore_mismatched_sizes=True)
|
8 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained('shahmi0519/fypvit')
|
9 |
+
|
10 |
+
# Move to GPU if available
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
model = model.to(device)
|
13 |
+
model.eval()
|
14 |
+
|
15 |
+
# Class labels (modify according to your model)
|
16 |
+
class_labels = [
|
17 |
+
"Bellpepper_fresh",
|
18 |
+
"Bellpepper_intermediate_fresh",
|
19 |
+
"Bellpepper_rotten",
|
20 |
+
"Carrot_fresh",
|
21 |
+
"Carrot_intermediate_fresh",
|
22 |
+
"Carrot_rotten",
|
23 |
+
"Cucumber_fresh",
|
24 |
+
"Cucumber_intermediate_fresh",
|
25 |
+
"Cucumber_rotten",
|
26 |
+
"Potato_fresh",
|
27 |
+
"Potato_intermediate_fresh",
|
28 |
+
"Potato_rotten",
|
29 |
+
"Tomato_fresh",
|
30 |
+
"Tomato_intermediate_fresh",
|
31 |
+
"Tomato_rotten",
|
32 |
+
"ripe_apple",
|
33 |
+
"ripe_banana",
|
34 |
+
"ripe_mango",
|
35 |
+
"ripe_oranges",
|
36 |
+
"ripe_strawberry",
|
37 |
+
"rotten_apple",
|
38 |
+
"rotten_banana",
|
39 |
+
"rotten_mango",
|
40 |
+
"rotten_oranges",
|
41 |
+
"rotten_strawberry",
|
42 |
+
"unripe_apple",
|
43 |
+
"unripe_banana",
|
44 |
+
"unripe_mango",
|
45 |
+
"unripe_oranges",
|
46 |
+
"unripe_strawberry"
|
47 |
+
]
|
48 |
+
|
49 |
+
def predict_freshness(image):
|
50 |
+
# Preprocess image
|
51 |
+
inputs = feature_extractor(images=image, return_tensors="pt").to(device)
|
52 |
+
|
53 |
+
# Predict
|
54 |
+
model.eval()
|
55 |
+
with torch.no_grad():
|
56 |
+
outputs = model(**inputs)
|
57 |
+
logits = outputs.logits
|
58 |
+
predicted_class_idx = logits.argmax(-1).item()
|
59 |
+
|
60 |
+
# Get label
|
61 |
+
try:
|
62 |
+
label = class_labels[predicted_class_idx]
|
63 |
+
except IndexError:
|
64 |
+
label = f"Class {predicted_class_idx}"
|
65 |
+
|
66 |
+
return label
|
67 |
+
|
68 |
+
# Create Gradio interface
|
69 |
+
title = "Freshness Detector"
|
70 |
+
description = "Upload an image of fruit/vegetable to detect its freshness state"
|
71 |
+
examples = [
|
72 |
+
["apple.jpeg"],
|
73 |
+
["banana.jpeg"],
|
74 |
+
["tomato.jpeg"]
|
75 |
+
]
|
76 |
+
|
77 |
+
iface = gr.Interface(
|
78 |
+
fn=predict_freshness,
|
79 |
+
inputs=gr.Image(type="pil", label="Upload Image"),
|
80 |
+
outputs=gr.Label(label="Freshness State"),
|
81 |
+
title=title,
|
82 |
+
description=description,
|
83 |
+
examples=examples
|
84 |
+
)
|
85 |
+
|
86 |
+
iface.launch(share=True)
|