Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,8 +4,8 @@ from transformers import ViTForImageClassification, ViTFeatureExtractor
|
|
| 4 |
from PIL import Image
|
| 5 |
|
| 6 |
# Load model and feature extractor
|
| 7 |
-
model = ViTForImageClassification.from_pretrained('
|
| 8 |
-
feature_extractor = ViTFeatureExtractor.from_pretrained('
|
| 9 |
|
| 10 |
# Move to GPU if available
|
| 11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
@@ -14,16 +14,8 @@ model.eval()
|
|
| 14 |
|
| 15 |
# Class labels (modify according to your model)
|
| 16 |
class_labels = [
|
| 17 |
-
"
|
| 18 |
-
"
|
| 19 |
-
"Bellpepper",
|
| 20 |
-
"Carrot",
|
| 21 |
-
"Cucumber",
|
| 22 |
-
"Potato",
|
| 23 |
-
"Tomato",
|
| 24 |
-
"mango",
|
| 25 |
-
"oranges",
|
| 26 |
-
"strawberry"
|
| 27 |
]
|
| 28 |
|
| 29 |
def predict_freshness(image):
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
|
| 6 |
# Load model and feature extractor
|
| 7 |
+
model = ViTForImageClassification.from_pretrained('shahmi0519/banana_artificial', num_labels=2, ignore_mismatched_sizes=True)
|
| 8 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained('shahmi0519/banana_artificial')
|
| 9 |
|
| 10 |
# Move to GPU if available
|
| 11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 14 |
|
| 15 |
# Class labels (modify according to your model)
|
| 16 |
class_labels = [
|
| 17 |
+
"Artificial",
|
| 18 |
+
"Natural"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
]
|
| 20 |
|
| 21 |
def predict_freshness(image):
|