Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import ViTForImageClassification, ViTFeatureExtractor
|
3 |
+
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# Check if GPU is available
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
|
9 |
+
# Load pre-trained ViT model from Hugging Face
|
10 |
+
model = ViTForImageClassification.from_pretrained('Dhahlan2000/banana_ripeness_level_detection', num_labels=20)
|
11 |
+
model.to(device)
|
12 |
+
model.eval()
|
13 |
+
|
14 |
+
# Load ViT feature extractor
|
15 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained('Dhahlan2000/banana_ripeness_level_detection')
|
16 |
+
|
17 |
+
# Class labels
|
18 |
+
predicted_classes = ['Overripe', 'ripe', 'rotten', 'unripe']
|
19 |
+
|
20 |
+
# Function for inference
|
21 |
+
def classify_fruit(image):
|
22 |
+
inputs = feature_extractor(images=image, return_tensors="pt").to(device)
|
23 |
+
with torch.no_grad():
|
24 |
+
outputs = model(**inputs)
|
25 |
+
logits = outputs.logits
|
26 |
+
predicted_class_idx = logits.argmax(-1).item()
|
27 |
+
return predicted_classes[predicted_class_idx]
|
28 |
+
|
29 |
+
# Gradio UI
|
30 |
+
demo = gr.Interface(
|
31 |
+
fn=classify_fruit,
|
32 |
+
inputs=gr.Image(type="pil"),
|
33 |
+
outputs=gr.Label(),
|
34 |
+
title="Fruit Ripeness Detection",
|
35 |
+
description="Upload an image of a fruit to determine whether it's fresh or rotten."
|
36 |
+
)
|
37 |
+
|
38 |
+
demo.launch()
|