import torch from transformers import ViTForImageClassification, ViTFeatureExtractor import gradio as gr from PIL import Image # Check if GPU is available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load pre-trained ViT model from Hugging Face model = ViTForImageClassification.from_pretrained('Dhahlan2000/banana_ripeness_level_detection', num_labels=20, ignore_mismatched_sizes=True) model.to(device) model.eval() # Load ViT feature extractor feature_extractor = ViTFeatureExtractor.from_pretrained('Dhahlan2000/banana_ripeness_level_detection') # Class labels predicted_classes = ['Overripe', 'ripe', 'rotten', 'unripe', 'new'] # Function for inference def classify_fruit(image): inputs = feature_extractor(images=image, return_tensors="pt").to(device) with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() return predicted_classes[predicted_class_idx] # Gradio UI demo = gr.Interface( fn=classify_fruit, inputs=gr.Image(type="pil"), outputs=gr.Label(), title="Fruit Ripeness Detection", description="Upload an image of a fruit to determine whether it's fresh or rotten." ) demo.launch()