File size: 2,081 Bytes
2817176
 
 
 
 
 
e56158c
4f33e12
2817176
 
e56158c
2817176
e56158c
 
 
 
2817176
e56158c
 
2817176
 
e56158c
 
 
 
 
2817176
 
 
 
 
e56158c
2817176
e56158c
2817176
 
 
 
 
e56158c
2817176
 
 
 
e56158c
2817176
e56158c
2817176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import gradio as gr
from huggingface_hub import InferenceClient

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# Initialize the inference client with the model repo
client = InferenceClient("cognitivecomputations/TinyDolphin-2.8.2-1.1b-laser")

def respond(
    message: str,
    history: list[tuple[str, str]],
    system_message: str,
    max_tokens: int,
    temperature: float,
    top_p: float,
):
    """Generate a response for the chatbot using the InferenceClient."""
    # Prepare the messages in the correct format for the API
    messages = [{"role": "system", "content": system_message}]

    for user_input, assistant_reply in history:
        if user_input:
            messages.append({"role": "user", "content": user_input})
        if assistant_reply:
            messages.append({"role": "assistant", "content": assistant_reply})

    messages.append({"role": "user", "content": message})

    response = ""

    # Stream response tokens from the chat completion API
    for message in client.chat_completion(
        messages=messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message["choices"][0]["delta"].get("content", "")
        response += token
        yield response

"""
For information on how to customize the ChatInterface, peruse the Gradio docs: https://www.gradio.app/docs/chatinterface
"""

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)

if __name__ == "__main__":
    demo.launch()