Dhahlan2000 commited on
Commit
63adfac
·
verified ·
1 Parent(s): c50c58a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -21
app.py CHANGED
@@ -17,7 +17,7 @@ model = AutoModelForCausalLM.from_pretrained(
17
  model.eval() # Set the model to evaluation mode
18
 
19
  # Initialize the inference client (if needed for other API-based tasks)
20
- client = InferenceClient(provider="together",token=access_token)
21
 
22
  def conversation_predict(input_text):
23
  """Generate a response for single-turn input using the model."""
@@ -50,31 +50,18 @@ def respond(
50
 
51
  messages.append({"role": "user", "content": message})
52
 
53
- # response = ""
54
-
55
- # Stream response tokens from the chat completion API
56
- # for message_chunk in client.chat_completion(
57
- # model = "google/gemma-2b-it",
58
- # messages=messages,
59
- # max_tokens=max_tokens,
60
- # stream=True,
61
- # temperature=temperature,
62
- # top_p=top_p,
63
- # ):
64
- # token = message_chunk["choices"][0]["delta"].get("content", "")
65
- # response += token
66
- # yield response
67
-
68
- response = client.chat.completions.create(
69
- model = "google/gemma-2b-it",
70
  messages=messages,
71
  max_tokens=max_tokens,
72
  stream=False,
73
  temperature=temperature,
74
  top_p=top_p,
75
  )
76
- response += response.choices[0].message
77
- return response
 
78
 
79
  # Create a Gradio ChatInterface demo
80
  demo = gr.ChatInterface(
@@ -94,4 +81,4 @@ demo = gr.ChatInterface(
94
  )
95
 
96
  if __name__ == "__main__":
97
- demo.launch(share=True)
 
17
  model.eval() # Set the model to evaluation mode
18
 
19
  # Initialize the inference client (if needed for other API-based tasks)
20
+ client = InferenceClient(provider="together", token=access_token)
21
 
22
  def conversation_predict(input_text):
23
  """Generate a response for single-turn input using the model."""
 
50
 
51
  messages.append({"role": "user", "content": message})
52
 
53
+ # Get the complete response at once (no streaming)
54
+ response = client.chat_completion(
55
+ model="google/gemma-2b-it",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  messages=messages,
57
  max_tokens=max_tokens,
58
  stream=False,
59
  temperature=temperature,
60
  top_p=top_p,
61
  )
62
+
63
+ # Extract and return the full response
64
+ return response["choices"][0]["message"]["content"]
65
 
66
  # Create a Gradio ChatInterface demo
67
  demo = gr.ChatInterface(
 
81
  )
82
 
83
  if __name__ == "__main__":
84
+ demo.launch(share=True)