import torch from transformers import ViTForImageClassification, ViTFeatureExtractor import gradio as gr from PIL import Image # Check if GPU is available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load pre-trained ViT model from Hugging Face model = ViTForImageClassification.from_pretrained('Dhahlan2000/ripeness_detection', num_labels=20) model.to(device) model.eval() # Load ViT feature extractor feature_extractor = ViTFeatureExtractor.from_pretrained('Dhahlan2000/ripeness_detection') # Class labels predicted_classes = [ 'FreshApple', 'FreshBanana', 'FreshBellpepper', 'FreshCarrot', 'FreshCucumber', 'FreshMango', 'FreshOrange', 'FreshPotato', 'FreshStrawberry', 'FreshTomato', 'RottenApple', 'RottenBanana', 'RottenBellpepper', 'RottenCarrot', 'RottenCucumber', 'RottenMango', 'RottenOrange', 'RottenPotato', 'RottenStrawberry', 'RottenTomato'] # Function for inference def classify_fruit(image): inputs = feature_extractor(images=image, return_tensors="pt").to(device) with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() return predicted_classes[predicted_class_idx] # Gradio UI demo = gr.Interface( fn=classify_fruit, inputs=gr.Image(type="pil"), outputs=gr.Label(), title="Fruit Ripeness Detection", description="Upload an image of a fruit to determine whether it's fresh or rotten." ) demo.launch()