import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig model_id = "TheBloke/CodeLlama-7B-GPTQ" # Example 4-bit quantized model bnb_config = BitsAndBytesConfig(load_in_4bit=True, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, quantization_config=bnb_config, device_map="auto" ) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) def generate_response(prompt): output = pipe(prompt, max_length=512, do_sample=True, temperature=0.3)[0]['generated_text'] return output gr.Interface( fn=generate_response, inputs=gr.Textbox(lines=5, label="Your prompt"), outputs=gr.Textbox(label="Code Llama response"), title="Code Llama Demo", description="Ask questions or request code snippets!" ).launch()