DhirajN commited on
Commit
9a372d2
·
verified ·
1 Parent(s): 01a3587

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -0
app.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """OpenAI Whisper from Hugging Face Transformers with Microsoft PHI 3 Integration"""
3
+
4
+ import gradio as gr
5
+ from transformers import pipeline
6
+ import torch
7
+ from huggingface_hub import InferenceClient
8
+ import os
9
+
10
+ # Initialize the InferenceClient for PHI 3
11
+ client = InferenceClient(
12
+ "microsoft/Phi-3.5-mini-instruct", # Update this to the correct model name for PHI 3
13
+ token=os.getenv("HF_API_TOKEN", "") # You can configure this API token through the Hugging Face Secrets
14
+ )
15
+
16
+ # Check if a GPU is available and use it if possible
17
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
18
+
19
+ # Initialize the Whisper pipeline
20
+ whisper = pipeline('automatic-speech-recognition', model='openai/whisper-tiny', device=0 if device == 'cuda' else -1)
21
+
22
+ # Instructions (can be set through Hugging Face Secrets or hardcoded)
23
+ instructions = os.getenv("INST", "Your default instructions here.")
24
+
25
+ def query_phi(prompt):
26
+ response = "" # Initialize an empty string to store the response
27
+ for message in client.chat_completion(
28
+ messages=[{"role": "user", "content": f"{instructions}\n{prompt}"}],
29
+ max_tokens=500,
30
+ stream=True,
31
+ ):
32
+ response += message.choices[0].delta.content # Append each message to the response
33
+ return response # Return the accumulated response after the loop
34
+
35
+ def transcribe_and_query(audio):
36
+ # Transcribe the audio file
37
+ transcription = whisper(audio)["text"]
38
+ transcription = "Prompt : " + transcription
39
+ # Query Microsoft PHI 3 with the transcribed text
40
+ phi_response = query_phi(transcription)
41
+
42
+ return transcription, phi_response
43
+
44
+ # Create Gradio interface
45
+ iface = gr.Interface(
46
+ fn=transcribe_and_query,
47
+ inputs=gr.Audio(type="filepath"),
48
+ outputs=["text", "text"],
49
+ title="Scam Call detector with BEEP",
50
+ description="Upload your recorded call to see if it is a scam or not. /n Stay Safe, Stay Secure."
51
+ )
52
+
53
+ # Launch the interface
54
+ iface.launch(share=True) # share=True is optional, it provides a public link