File size: 7,305 Bytes
ac239ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import logging

import torch
from hydra import compose
from hydra.utils import instantiate
from omegaconf import OmegaConf

HF_MODEL_ID_TO_FILENAMES = {
    "facebook/sam2-hiera-tiny": (
        "configs/sam2/sam2_hiera_t.yaml",
        "sam2_hiera_tiny.pt",
    ),
    "facebook/sam2-hiera-small": (
        "configs/sam2/sam2_hiera_s.yaml",
        "sam2_hiera_small.pt",
    ),
    "facebook/sam2-hiera-base-plus": (
        "configs/sam2/sam2_hiera_b+.yaml",
        "sam2_hiera_base_plus.pt",
    ),
    "facebook/sam2-hiera-large": (
        "configs/sam2/sam2_hiera_l.yaml",
        "sam2_hiera_large.pt",
    ),
    "facebook/sam2.1-hiera-tiny": (
        "configs/sam2.1/sam2.1_hiera_t.yaml",
        "sam2.1_hiera_tiny.pt",
    ),
    "facebook/sam2.1-hiera-small": (
        "configs/sam2.1/sam2.1_hiera_s.yaml",
        "sam2.1_hiera_small.pt",
    ),
    "facebook/sam2.1-hiera-base-plus": (
        "configs/sam2.1/sam2.1_hiera_b+.yaml",
        "sam2.1_hiera_base_plus.pt",
    ),
    "facebook/sam2.1-hiera-large": (
        "configs/sam2.1/sam2.1_hiera_l.yaml",
        "sam2.1_hiera_large.pt",
    ),
}


def get_best_available_device():
    """
    Get the best available device in the order: CUDA, MPS, CPU
    Returns: device string for torch.device
    """
    if torch.cuda.is_available():
        return "cuda"
    elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
        return "mps"
    else:
        return "cpu"


def build_sam2(
    config_file,
    ckpt_path=None,
    device=None,
    mode="eval",
    hydra_overrides_extra=[],
    apply_postprocessing=True,
    **kwargs,
):
    # Use the provided device or get the best available one
    device = device or get_best_available_device()
    logging.info(f"Using device: {device}")

    if apply_postprocessing:
        hydra_overrides_extra = hydra_overrides_extra.copy()
        hydra_overrides_extra += [
            # dynamically fall back to multi-mask if the single mask is not stable
            "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
            "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
            "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
        ]
    # Read config and init model
    cfg = compose(config_name=config_file, overrides=hydra_overrides_extra)
    OmegaConf.resolve(cfg)
    model = instantiate(cfg.model, _recursive_=True)
    _load_checkpoint(model, ckpt_path)
    model = model.to(device)
    if mode == "eval":
        model.eval()
    return model


def build_sam2_video_predictor(
    config_file,
    ckpt_path=None,
    device=None,
    mode="eval",
    hydra_overrides_extra=[],
    apply_postprocessing=True,
    **kwargs,
):
    # Use the provided device or get the best available one
    device = device or get_best_available_device()
    logging.info(f"Using device: {device}")

    hydra_overrides = [
        "++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor",
    ]
    if apply_postprocessing:
        hydra_overrides_extra = hydra_overrides_extra.copy()
        hydra_overrides_extra += [
            # dynamically fall back to multi-mask if the single mask is not stable
            "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
            "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
            "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
            # the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking
            "++model.binarize_mask_from_pts_for_mem_enc=true",
            # fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution)
            "++model.fill_hole_area=8",
        ]
    hydra_overrides.extend(hydra_overrides_extra)

    # Read config and init model
    cfg = compose(config_name=config_file, overrides=hydra_overrides)
    OmegaConf.resolve(cfg)
    model = instantiate(cfg.model, _recursive_=True)
    _load_checkpoint(model, ckpt_path)
    model = model.to(device)
    if mode == "eval":
        model.eval()
    return model

def build_sam2_video_predictor_npz(
    config_file,
    ckpt_path=None,
    device=None,
    mode="eval",
    hydra_overrides_extra=[],
    apply_postprocessing=True,
    **kwargs,
):
    # Use the provided device or get the best available one
    device = device or get_best_available_device()
    logging.info(f"Using device: {device}")

    hydra_overrides = [
        "++model._target_=sam2.sam2_video_predictor_npz.SAM2VideoPredictorNPZ",
    ]
    if apply_postprocessing:
        hydra_overrides_extra = hydra_overrides_extra.copy()
        hydra_overrides_extra += [
            # dynamically fall back to multi-mask if the single mask is not stable
            "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
            "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
            "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
            # the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking
            "++model.binarize_mask_from_pts_for_mem_enc=true",
            # fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution)
            "++model.fill_hole_area=8",
        ]
    hydra_overrides.extend(hydra_overrides_extra)

    # Read config and init model
    cfg = compose(config_name=config_file, overrides=hydra_overrides)
    OmegaConf.resolve(cfg)
    model = instantiate(cfg.model, _recursive_=True)
    _load_checkpoint(model, ckpt_path)
    model = model.to(device)
    if mode == "eval":
        model.eval()
    return model



def _hf_download(model_id):
    from huggingface_hub import hf_hub_download

    config_name, checkpoint_name = HF_MODEL_ID_TO_FILENAMES[model_id]
    ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
    return config_name, ckpt_path


def build_sam2_hf(model_id, **kwargs):
    config_name, ckpt_path = _hf_download(model_id)
    return build_sam2(config_file=config_name, ckpt_path=ckpt_path, **kwargs)


def build_sam2_video_predictor_hf(model_id, **kwargs):
    config_name, ckpt_path = _hf_download(model_id)
    return build_sam2_video_predictor(
        config_file=config_name, ckpt_path=ckpt_path, **kwargs
    )


def _load_checkpoint(model, ckpt_path):
    if ckpt_path is not None:
        sd = torch.load(ckpt_path, map_location="cpu", weights_only=True)["model"]
        missing_keys, unexpected_keys = model.load_state_dict(sd)
        if missing_keys:
            logging.error(missing_keys)
            raise RuntimeError()
        if unexpected_keys:
            logging.error(unexpected_keys)
            raise RuntimeError()
        logging.info("Loaded checkpoint sucessfully")