File size: 22,609 Bytes
ac239ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
import unittest

import torch
import torch.nn as nn
import torch.nn.functional as F
from sam2.modeling.sam2_base import SAM2Base
from sam2.build_sam import build_sam2_video_predictor
from sam2.utils.transforms import SAM2Transforms
from sam2.modeling.sam2_utils import get_1d_sine_pe

class SAM2VideoTrainer(nn.Module):
    """
    SAM2VideoTrainer is a PyTorch module for training a video segmentation model using SAM2.
    Attributes:
        device (torch.device): The device to run the model on.
        model (nn.Module): The SAM2 video predictor model.
        num_feature_levels (int): Number of feature levels in the model.
        memory_size (int): Size of the memory for storing features.
        _transforms (SAM2Transforms): Transformations applied to the input data.
        _bb_feat_sizes (list): Spatial dimensions for backbone feature maps.
        num_maskmem (int): Number of mask memory features.
        sam_point_coords (torch.Tensor): Placeholder for SAM point coordinates.
        sam_point_labels (torch.Tensor): Placeholder for SAM point labels.
        _orig_hw (list): Original height and width of the input frames.
        maskmem_features (list): List of mask memory features.
        maskmem_pos_enc (list): List of mask memory positional encodings.
        batch_size (int): Batch size of the input data.
        obj_ptrs (list): List of object pointers.
    """

    def __init__(self, model_cfg, sam2_checkpoint, device, memory_size=7, mask_threshold=0.5, use_mask_threshold=False):
        """
        Initializes the SAM2VideoTrainer class.

        Args:
            model_cfg (dict): Configuration dictionary for the model.
            sam2_checkpoint (str): Path to the SAM2 checkpoint file.
            device (torch.device): The device to run the model on (e.g., 'cpu' or 'cuda').
            memory_size (int, optional): Size of the memory. Defaults to 7.
            mask_threshold (float, optional): Threshold for mask prediction. Defaults to 0.5.
            use_mask_threshold (bool, optional): Flag to use mask thresholding. Defaults to False.

        Attributes:
            device (torch.device): The device to run the model on.
            model (SAM2VideoPredictor): The SAM2 video predictor model.
            num_feature_levels (int): Number of feature levels in the model.
            memory_size (int): Size of the memory.
            _transforms (SAM2Transforms): Transformations applied to the input data.
            _bb_feat_sizes (list): Spatial dimensions for backbone feature maps.
            num_maskmem (int): Number of mask memories.
            sam_point_coords (torch.Tensor): Tensor for SAM point coordinates.
            sam_point_labels (torch.Tensor): Tensor for SAM point labels.
            mask_threshold (float): Threshold for mask prediction.
            use_mask_threshold (bool): Flag to use mask thresholding.
        """
        super().__init__()
        self.device = device
        self.model = build_sam2_video_predictor(
            model_cfg, sam2_checkpoint, device=self.device, mode="train"
        )
        self.model.train()
        self.num_feature_levels = self.model.num_feature_levels

        self.num_maskmem = 7
        self.memory_size = (
            memory_size if memory_size <= self.num_maskmem else self.num_maskmem
        )

        self._transforms = SAM2Transforms(
            resolution=self.model.image_size,
            mask_threshold=0.5,
            max_hole_area=0,
            max_sprinkle_area=0,
        )

        # Spatial dim for backbone feature maps
        self._bb_feat_sizes = [
            (256, 256),
            (128, 128),
            (64, 64),
        ]

        self.sam_point_coords = torch.zeros(1, 1, 2, device=device)
        self.sam_point_labels = -torch.ones(1, 1, dtype=torch.int32, device=device)
        self.mask_threshold = mask_threshold
        self.use_mask_threshold = use_mask_threshold

        self.init_state()

    def init_state(self):
        """
        Initializes the state variables for the video trainer.

        This method sets the initial state of various attributes used in the video
        training process. It resets the original height and width, mask memory
        features, mask memory positional encoding, batch size, and object pointers
        to their default values.

        Attributes:
            _orig_hw (tuple or None): Original height and width of the video frames.
            maskmem_features (Any or None): Features related to mask memory.
            maskmem_pos_enc (Any or None): Positional encoding for mask memory.
            batch_size (int or None): Size of the batch for training.
            obj_ptrs (list): List of object pointers used in the training process.
        """
        self._orig_hw = None
        self.maskmem_features = None
        self.maskmem_pos_enc = None
        self.batch_size = None
        self.current_frame_idx = 0
        self.obj_ptrs = []
        self.num_frames = 0

    def reset_state(self):
        """
        Resets the state of the video trainer.

        This method clears the internal state variables, setting them to their initial values:
        - `_orig_hw`: Set to None. Represents the original height and width.
        - `maskmem_features`: Set to None. Represents the mask memory features.
        - `maskmem_pos_enc`: Set to None. Represents the mask memory positional encoding.
        - `batch_size`: Set to None. Represents the batch size.
        - `obj_ptrs`: Set to an empty list. Represents the object pointers.
        """
        self._orig_hw = None
        self.maskmem_features = None
        self.maskmem_pos_enc = None
        self.batch_size = None
        self.current_frame_idx = 0
        self.obj_ptrs = []
        self.num_frames = 0

    def forward(self, videos, bboxes, labels=None):
        """
        Forward pass for processing video frames and predicting masks, logits, and IoUs.

        Args:
            videos (torch.Tensor): A tensor of shape (batch_size, num_frames, C, H, W) representing the input video frames.
            bboxes (torch.Tensor): A tensor of shape (batch_size, 4) representing the bounding boxes for the first frame.
            labels (torch.Tensor, optional): A tensor of shape (batch_size, num_frames, H, W) representing the ground truth masks for each frame. Defaults to None.

        Returns:
            tuple: A tuple containing:
            - all_masks (list of torch.Tensor): A list of tensors representing the predicted masks for each frame.
            - all_logits (list of torch.Tensor): A list of tensors representing the predicted logits for each frame.
            - all_ious (list of torch.Tensor): A list of tensors representing the predicted IoUs for each frame.
        """
        self.init_state()
        batch_size, num_frames, C, H, W = videos.shape
        self.num_frames = num_frames
        self._orig_hw = [H, W]
        self.batch_size = batch_size

        # Extract features for all frames in the video
        videos = videos.view(batch_size * num_frames, C, H, W)
        features = self.model.forward_image(videos)  # Extract features for all frames
        features = {
            k: (
                v.view(batch_size, num_frames, *v.shape[1:])
                if not isinstance(v, list)
                else ([_v.view(batch_size, num_frames, *_v.shape[1:]) for _v in v])
            )
            for k, v in features.items()
        }
        frame_features = self.preprocess_frame_features(
            features, batch_size, num_frames
        )

        # Process the first frame with bounding boxes as prompts
        first_frame_features = frame_features[0]
        first_frame_bbox = bboxes.view(batch_size, 4)

        # Predict the first frame masks and IoUs
        first_frame_masks, first_frame_logits, first_frame_ious, object_score_logits = (
            self._predict_first_frame(first_frame_features, first_frame_bbox)
        )

        # Initialize memory with first frame predictions
        prev_pred_mask = first_frame_masks if labels is None else labels[:, 0]
        memory = self._initialize_memory(first_frame_features, prev_pred_mask, object_score_logits)

        # Process remaining frames
        all_masks, all_logits, all_ious = (
            [first_frame_masks],
            [first_frame_logits],
            [first_frame_ious],
        )
        for t in range(1, num_frames):
            self.current_frame_idx = t
            frame_feature = frame_features[t]
            masks, logits, ious, object_score_logits = self._predict_frame(
                frame_feature, memory, prev_pred_mask
            )
            all_masks.append(masks)
            all_logits.append(logits)
            all_ious.append(ious)
            if t < num_frames - 1:
                prev_pred_mask = masks if labels is None else labels[:, t]
                memory = self._update_memory(frame_feature, prev_pred_mask, memory, object_score_logits)

        self.reset_state()
        return all_masks, all_logits, all_ious

    def normalize_bbox(self, bbox):
        """
        Normalize the given bounding box coordinates.

        This method transforms the bounding box coordinates to a normalized form
        based on the original height and width of the image.

        Args:
            bbox (list or ndarray): The bounding box coordinates to be normalized.

        Returns:
            list or ndarray: The normalized bounding box coordinates.
        """
        unnorm_bbox = self._transforms.transform_boxes(
            bbox, normalize=True, orig_hw=self._orig_hw
        )
        return unnorm_bbox

    def _get_points_placeholder(self, batch_size=None):
        """
        Generates a placeholder for point coordinates and labels.

        Args:
            batch_size (int, optional): The size of the batch. If not provided,
                        defaults to the instance's batch_size attribute.

        Returns:
            tuple: A tuple containing:
            - torch.Tensor: Expanded point coordinates tensor of shape (batch_size, -1, -1).
            - torch.Tensor: Expanded point labels tensor of shape (batch_size, -1).
        """
        batch_size = self.batch_size if batch_size is None else batch_size
        points_placeholder = (
            self.sam_point_coords.expand(batch_size, -1, -1),
            self.sam_point_labels.expand(batch_size, -1),
        )
        return points_placeholder

    def unbind_frame_features(self, frame_features, num_frames):
        """
        Unbind image features from the model.
        """
        keys = frame_features.keys()
        unbinded_frame_features = []
        for frame_idx in range(num_frames):
            frame_feature = {}
            for k in keys:
                frame_feature[k] = (
                    frame_features[k][:, frame_idx]
                    if not isinstance(frame_features[k], list)
                    else [v[:, frame_idx] for v in frame_features[k]]
                )
            unbinded_frame_features.append(frame_feature)
        return unbinded_frame_features

    def preprocess_frame_features(self, frame_features, batch_size, num_frames):
        """
        Preprocess frame features.
        """
        frame_features = self.unbind_frame_features(frame_features, num_frames)
        preprocessed_frame_features = []
        for frame_idx, frame_feature in enumerate(frame_features):
            feature_maps = frame_feature["backbone_fpn"][-self.num_feature_levels :]
            # flatten NxCxHxW to HWxNxC
            vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps]
            if (
                frame_idx == 0 and self.model.directly_add_no_mem_embed
            ):  # Add no memory embedding
                vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
            # HWxNxC to NxCxHxW
            feats = [
                feat.permute(1, 2, 0).view(batch_size, -1, *feat_size)
                for feat, feat_size in zip(
                    vision_feats[::-1], self._bb_feat_sizes[::-1]
                )
            ][::-1]
            _features = {
                "image_embed": feats[-1],
                "high_res_feats": feats[:-1],
                "backbone_fpn": frame_feature["backbone_fpn"][
                    -self.num_feature_levels :
                ],
                "vision_pos_enc": frame_feature["vision_pos_enc"][
                    -self.num_feature_levels :
                ],
            }
            preprocessed_frame_features.append(_features)
        return preprocessed_frame_features

    def _embed_bbox(self, bbox):
        """
        Embed bounding boxes.
        """
        bbox = self.normalize_bbox(bbox)
        box_coords = bbox.reshape(-1, 2, 2)
        box_labels = torch.tensor([[2, 3]], dtype=torch.int, device=bbox.device)
        box_labels = box_labels.repeat(bbox.size(0), 1)
        concat_points = (box_coords, box_labels)
        sparse_embeddings, dense_embeddings = self.model.sam_prompt_encoder(
            points=concat_points, boxes=None, masks=None
        )
        return sparse_embeddings, dense_embeddings

    def _predict_first_frame(self, features, bbox):
        """
        Predict masks and IoUs for the first frame.
        """
        sparse_embeddings, dense_embeddings = self._embed_bbox(bbox)

        low_res_masks, ious, sam_output_tokens, object_score_logits = (
            self.model.sam_mask_decoder(
                image_embeddings=features["image_embed"],
                image_pe=self.model.sam_prompt_encoder.get_dense_pe(),
                sparse_prompt_embeddings=sparse_embeddings,
                dense_prompt_embeddings=dense_embeddings,
                multimask_output=False,
                repeat_image=False,
                high_res_features=features["high_res_feats"],
            )
        )

        sam_output_token = sam_output_tokens[:, -1]
        obj_ptr = self.model.obj_ptr_proj(sam_output_token)
        self.obj_ptrs.append(obj_ptr)
        pred_mask, pred_logit = self._postprocess_masks(low_res_masks)
        return pred_mask, pred_logit, ious[:, -1], object_score_logits

    def _postprocess_masks(self, logits, size=None):
        """
        Perform post-processing on output masks.
        """
        size = self._orig_hw if size is None else size
        logits = F.interpolate(logits, size, mode="bilinear", align_corners=False)
        logits = logits[:, -1].unsqueeze(1)
        masks = torch.sigmoid(logits)
        if self.use_mask_threshold:
            masks = (masks > self.mask_threshold).float()
        return masks, logits

    def _extract_memory_features(self, features, masks, object_score_logits):
        """
        Extracts memory features from the given features and masks.

        Args:
            features (dict): A dictionary containing feature maps from the backbone FPN.
            masks (Tensor): A tensor representing the masks to be used by the memory encoder.

        Returns:
            dict: A dictionary containing:
            - "vision_features" (Tensor): The vision features extracted and processed by the memory encoder.
            - "vision_pos_enc" (Tensor): The positional encoding of the vision features.
        """
        pix_feat = features["backbone_fpn"][-1]
        maskmem_out = self.model.memory_encoder(
            pix_feat, masks, skip_mask_sigmoid=True  # sigmoid already applied
        )
        maskmem_features = maskmem_out["vision_features"]
        
        if self.model.no_obj_embed_spatial is not None:
            is_obj_appearing = (object_score_logits > 0).float()
            maskmem_features += (
                1 - is_obj_appearing[..., None, None]
            ) * self.model.no_obj_embed_spatial[..., None, None].expand(
                *maskmem_features.shape
            )
        maskmem_features = maskmem_features.flatten(2).permute(2, 0, 1)
        maskmem_pos_enc = maskmem_out["vision_pos_enc"][-1].flatten(2).permute(2, 0, 1)
        return {"vision_features": maskmem_features, "vision_pos_enc": maskmem_pos_enc}

    def _initialize_memory(self, features, masks, object_score_logits):
        """
        Initialize memory for the first frame.
        """
        maskmem_out = self._extract_memory_features(features, masks, object_score_logits)
        self.maskmem_features = [maskmem_out["vision_features"]]
        self.maskmem_pos_enc = [maskmem_out["vision_pos_enc"]]
        return self.maskmem_features, self.maskmem_pos_enc

    def _update_memory(self, features, masks, memory=None, object_score_logits=None):
        """
        Update memory with new frame data.
        """
        if memory is None:
            maskmem_features, maskmem_pos_enc = (
                self.maskmem_features,
                self.maskmem_pos_enc,
            )
        else:
            maskmem_features, maskmem_pos_enc = memory

        maskmem_out = self._extract_memory_features(features, masks, object_score_logits)
        maskmem_features.append(maskmem_out["vision_features"])
        maskmem_pos_enc.append(maskmem_out["vision_pos_enc"])
        if len(maskmem_features) > self.memory_size:
            self.maskmem_features = maskmem_features[-self.memory_size :]
            self.maskmem_pos_enc = maskmem_pos_enc[-self.memory_size :]
        return maskmem_features, maskmem_pos_enc

    def _prepare_memory(self, memory):
        """
        Prepare memory for the current frame.
        """
        if memory is None:
            maskmem_features, maskmem_pos_enc = (
                self.maskmem_features,
                self.maskmem_pos_enc,
            )
        else:
            maskmem_features, maskmem_pos_enc = memory
        for idx in range(len(maskmem_pos_enc)):
            rel_pos = len(maskmem_pos_enc) - idx
            maskmem_pos_enc[idx] = (
                maskmem_pos_enc[idx] + self.model.maskmem_tpos_enc[rel_pos - 1]
            )
        obj_ptrs = torch.stack(self.obj_ptrs, dim=0)
        
        if self.model.add_tpos_enc_to_obj_ptrs:
            max_obj_ptrs_in_encoder = self.num_frames
            pos_list = [self.current_frame_idx]
            t_diff_max = max_obj_ptrs_in_encoder - 1
            tpos_dim = self.model.hidden_dim if self.model.proj_tpos_enc_in_obj_ptrs else self.model.mem_dim
            obj_pos = torch.tensor(pos_list, device=obj_ptrs.device)
            obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim)
            obj_pos = self.model.obj_ptr_tpos_proj(obj_pos)
            obj_pos = obj_pos.unsqueeze(1).expand(-1, self.batch_size, self.model.mem_dim)
        else:
            obj_pos = obj_ptrs.new_zeros(
                len(self.obj_ptrs), self.batch_size, self.model.mem_dim
            )
        C = self.model.hidden_dim
        if self.model.mem_dim < C:
            # split a pointer into (C // self.mem_dim) tokens for self.mem_dim < C
            obj_ptrs = obj_ptrs.reshape(
                -1, self.batch_size, C // self.model.mem_dim, self.model.mem_dim
            )
            obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1)
            obj_pos = obj_pos.repeat_interleave(C // self.model.mem_dim, dim=0)
        num_obj_ptr_tokens = obj_ptrs.shape[0]
        memory = torch.cat(maskmem_features + [obj_ptrs], dim=0)
        memory_pos_embed = torch.cat(maskmem_pos_enc + [obj_pos], dim=0)
        return memory, memory_pos_embed, num_obj_ptr_tokens

    def _predict_frame(self, features, memory, prev_mask=None):
        """
        Predict masks and IoUs for subsequent frames using memory.
        """
        memory, memory_pos_embed, num_obj_ptr_tokens = self._prepare_memory(memory)

        current_vision_feats = [
            x.flatten(2).permute(2, 0, 1) for x in features["backbone_fpn"]
        ]
        current_vision_pos_embeds = [
            x.flatten(2).permute(2, 0, 1) for x in features["vision_pos_enc"]
        ]
        pix_feat_with_mem = self.model.memory_attention(
            curr=current_vision_feats[-1:],
            curr_pos=current_vision_pos_embeds[-1:],
            memory=memory,
            memory_pos=memory_pos_embed,
            num_obj_ptr_tokens=num_obj_ptr_tokens,
        )
        pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(
            *features["backbone_fpn"][-1].shape
        )
        sparse_embeddings, dense_embeddings = self.model.sam_prompt_encoder(
            points=self._get_points_placeholder(),
            boxes=None,
            masks=None,
        )
        low_res_masks, ious, _, object_score_logits = self.model.sam_mask_decoder(
            image_embeddings=pix_feat_with_mem,
            image_pe=self.model.sam_prompt_encoder.get_dense_pe(),
            sparse_prompt_embeddings=sparse_embeddings,
            dense_prompt_embeddings=dense_embeddings,
            multimask_output=False,
            repeat_image=False,
            high_res_features=features["high_res_feats"],
        )

        pred_mask, pred_logit = self._postprocess_masks(low_res_masks)
        return pred_mask, pred_logit, ious[:, -1], object_score_logits


class TestSAM2VideoTrainer(unittest.TestCase):
    def setUp(self):
        # Initialize parameters
        sam2_checkpoint = "./checkpoints/sam2_hiera_tiny.pt"
        model_cfg = "sam2_hiera_t.yaml"
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

        # Create an instance of SAM2VideoTrainer
        self.trainer = SAM2VideoTrainer(model_cfg, sam2_checkpoint, device=self.device)

        # Define input video and bounding boxes
        self.batch_size = 2
        self.num_frames = 2
        self.C = 3
        self.H = 1024
        self.W = 1024

        # Create random video data and bounding boxes
        self.videos = torch.randn(
            self.batch_size, self.num_frames, self.C, self.H, self.W
        ).to(self.device)
        self.masks = torch.zeros(
            self.batch_size, self.num_frames, 1, self.H, self.W
        ).to(self.device)
        self.bboxes = torch.tensor(
            [[100, 100, 200, 200], [150, 150, 250, 250]], dtype=torch.float32
        ).to(self.device)

    def test_forward(self):
        # Execute the forward method
        # masks, ious = self.trainer(self.videos, self.bboxes, self.masks)
        masks, ious = self.trainer(self.videos, self.bboxes, None)

        print("Masks shape:", masks[0].shape)
        print("IoUs shape:", ious[0].shape)

        print("Masks:", masks)
        print("IoUs:", ious)


if __name__ == "__main__":
    unittest.main()