Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,15 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
-
from typing import List
|
4 |
from llama_cpp import Llama
|
5 |
import os
|
|
|
6 |
|
7 |
app = FastAPI()
|
8 |
|
9 |
-
llm = None
|
10 |
|
|
|
11 |
class Message(BaseModel):
|
12 |
role: str
|
13 |
content: str
|
@@ -15,38 +17,55 @@ class Message(BaseModel):
|
|
15 |
class ChatRequest(BaseModel):
|
16 |
model: str
|
17 |
messages: List[Message]
|
18 |
-
temperature: float = 0.7
|
19 |
-
max_tokens: int = 256
|
20 |
|
|
|
21 |
@app.on_event("startup")
|
22 |
def load_model():
|
23 |
-
|
|
|
|
|
|
|
|
|
24 |
model_path = f.read().strip()
|
25 |
-
|
26 |
if not os.path.exists(model_path):
|
27 |
-
raise RuntimeError(f"Model not found: {model_path}")
|
|
|
28 |
|
29 |
-
|
|
|
30 |
async def chat_completions(req: ChatRequest):
|
31 |
global llm
|
32 |
if llm is None:
|
33 |
return {"error": "Model not initialized."}
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
output = llm(
|
37 |
prompt,
|
38 |
max_tokens=req.max_tokens,
|
39 |
temperature=req.temperature,
|
40 |
stop=["user:", "assistant:"]
|
41 |
)
|
42 |
-
text = output
|
43 |
-
|
44 |
-
|
|
|
45 |
"object": "chat.completion",
|
46 |
-
"
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
52 |
}
|
|
|
|
1 |
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
+
from typing import List, Optional
|
4 |
from llama_cpp import Llama
|
5 |
import os
|
6 |
+
import time
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
10 |
+
llm = None
|
11 |
|
12 |
+
# Request models
|
13 |
class Message(BaseModel):
|
14 |
role: str
|
15 |
content: str
|
|
|
17 |
class ChatRequest(BaseModel):
|
18 |
model: str
|
19 |
messages: List[Message]
|
20 |
+
temperature: Optional[float] = 0.7
|
21 |
+
max_tokens: Optional[int] = 256
|
22 |
|
23 |
+
# Startup event to load the model
|
24 |
@app.on_event("startup")
|
25 |
def load_model():
|
26 |
+
global llm
|
27 |
+
model_path_file = "/tmp/model_path.txt"
|
28 |
+
if not os.path.exists(model_path_file):
|
29 |
+
raise RuntimeError(f"Model path file not found: {model_path_file}")
|
30 |
+
with open(model_path_file, "r") as f:
|
31 |
model_path = f.read().strip()
|
|
|
32 |
if not os.path.exists(model_path):
|
33 |
+
raise RuntimeError(f"Model not found at path: {model_path}")
|
34 |
+
llm = Llama(model_path=model_path)
|
35 |
|
36 |
+
# LM Studio style chat completion endpoint
|
37 |
+
@app.post("/chat/completions")
|
38 |
async def chat_completions(req: ChatRequest):
|
39 |
global llm
|
40 |
if llm is None:
|
41 |
return {"error": "Model not initialized."}
|
42 |
|
43 |
+
# Construct prompt from messages
|
44 |
+
# LM Studio usually concatenates messages with role tags
|
45 |
+
prompt = ""
|
46 |
+
for msg in req.messages:
|
47 |
+
prompt += f"{msg.role}: {msg.content}\n"
|
48 |
+
prompt += "assistant:"
|
49 |
+
|
50 |
output = llm(
|
51 |
prompt,
|
52 |
max_tokens=req.max_tokens,
|
53 |
temperature=req.temperature,
|
54 |
stop=["user:", "assistant:"]
|
55 |
)
|
56 |
+
text = output.get("choices", [{}])[0].get("text", "").strip()
|
57 |
+
|
58 |
+
response = {
|
59 |
+
"id": f"chatcmpl-{int(time.time())}",
|
60 |
"object": "chat.completion",
|
61 |
+
"created": int(time.time()),
|
62 |
+
"model": req.model,
|
63 |
+
"choices": [
|
64 |
+
{
|
65 |
+
"index": 0,
|
66 |
+
"message": {"role": "assistant", "content": text},
|
67 |
+
"finish_reason": "stop"
|
68 |
+
}
|
69 |
+
]
|
70 |
}
|
71 |
+
return response
|