Spaces:
Sleeping
Sleeping
""" | |
File: vlm.py | |
Description: Vision language model utility functions. | |
Author: Didier Guillevic | |
Date: 2025-05-08 | |
""" | |
from transformers import AutoProcessor, AutoModelForImageTextToText | |
import torch | |
# | |
# Load the model: OPEA/Mistral-Small-3.1-24B-Instruct-2503-int4-AutoRound-awq-sym | |
# | |
model_id = "OPEA/Mistral-Small-3.1-24B-Instruct-2503-int4-AutoRound-awq-sym" | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
processor = AutoProcessor.from_pretrained(model_id) | |
model = AutoModelForImageTextToText.from_pretrained( | |
model_id, | |
_attn_implementation="flash_attention_2", | |
torch_dtype=torch.bfloat16 | |
).to(device) | |
# | |
# Encode images as base64 | |
# | |
def encode_image(image_path): | |
"""Encode the image to base64.""" | |
try: | |
with open(image_path, "rb") as image_file: | |
return base64.b64encode(image_file.read()).decode('utf-8') | |
except FileNotFoundError: | |
print(f"Error: The file {image_path} was not found.") | |
return None | |
except Exception as e: # Added general exception handling | |
print(f"Error: {e}") | |
return None | |
# | |
# Build messages | |
# | |
def build_messages(message: dict, history: list[tuple]): | |
"""Build messages given message & history from a **multimodal** chat interface. | |
Args: | |
message: dictionary with keys: 'text', 'files' | |
history: list of tuples with (message, response) | |
Returns: | |
list of messages (to be sent to the model) | |
""" | |
logger.info(f"{message=}") | |
logger.info(f"{history=}") | |
# Get the user's text and list of images | |
user_text = message.get("text", "") | |
user_images = message.get("files", []) # List of images | |
# Build the message list including history | |
messages = [] | |
combined_user_input = [] # Combine images and text if found in same turn. | |
for user_turn, bot_turn in history: | |
if isinstance(user_turn, tuple): # Image input | |
image_content = [ | |
{ | |
"type": "image_url", | |
"image_url": f"data:image/jpeg;base64,{encode_image(image)}" | |
} for image in user_turn | |
] | |
combined_user_input.extend(image_content) | |
elif isinstance(user_turn, str): # Text input | |
combined_user_input.append({"type": "text", "text": user_turn}) | |
if combined_user_input and bot_turn: | |
messages.append({'role': 'user', 'content': combined_user_input}) | |
messages.append({'role': 'assistant', 'content': [{"type": "text", "text": bot_turn}]}) | |
combined_user_input = [] #reset the combined user input. | |
# Build the user message's content from the provided message | |
user_content = [] | |
if user_text: | |
user_content.append({"type": "text", "text": user_text}) | |
for image in user_images: | |
user_content.append( | |
{ | |
"type": "image_url", | |
"image_url": f"data:image/jpeg;base64,{encode_image(image)}" | |
} | |
) | |
messages.append({'role': 'user', 'content': user_content}) | |
logger.info(f"{messages=}") | |
return messages | |
# | |
# stream response | |
# | |
def stream_response( | |
messages: list[dict], | |
max_new_tokens: int=1_024, | |
temperature: float=0.15 | |
): | |
"""Stream the model's response to the chat interface. | |
Args: | |
messages: list of messages to send to the model | |
""" | |
# Generate model's response | |
inputs = processor.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
tokenize=True, | |
return_dict=True, | |
return_tensors="pt", | |
).to(model.device, dtype=torch.bfloat16) | |
# Generate | |
streamer = TextIteratorStreamer( | |
processor, skip_prompt=True, skip_special_tokens=True) | |
generation_args = dict( | |
inputs, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
top_p=0.9, | |
do_sample=True | |
) | |
thread = Thread(target=model.generate, kwargs=generation_args) | |
thread.start() | |
partial_message = "" | |
for new_text in streamer: | |
partial_message += new_text | |
yield partial_message | |