Spaces:
Runtime error
Runtime error
Create vlm.py
Browse files
vlm.py
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
File: vlm.py
|
| 3 |
+
Description: Vision language model utility functions.
|
| 4 |
+
Author: Didier Guillevic
|
| 5 |
+
Date: 2025-05-08
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText
|
| 9 |
+
|
| 10 |
+
#
|
| 11 |
+
# Load the model: OPEA/Mistral-Small-3.1-24B-Instruct-2503-int4-AutoRound-awq-sym
|
| 12 |
+
#
|
| 13 |
+
model_id = "OPEA/Mistral-Small-3.1-24B-Instruct-2503-int4-AutoRound-awq-sym"
|
| 14 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 15 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 16 |
+
model = AutoModelForImageTextToText.from_pretrained(
|
| 17 |
+
model_id,
|
| 18 |
+
_attn_implementation="flash_attention_2",
|
| 19 |
+
torch_dtype=torch.bfloat16
|
| 20 |
+
).to(device)
|
| 21 |
+
|
| 22 |
+
#
|
| 23 |
+
# Encode images as base64
|
| 24 |
+
#
|
| 25 |
+
def encode_image(image_path):
|
| 26 |
+
"""Encode the image to base64."""
|
| 27 |
+
try:
|
| 28 |
+
with open(image_path, "rb") as image_file:
|
| 29 |
+
return base64.b64encode(image_file.read()).decode('utf-8')
|
| 30 |
+
except FileNotFoundError:
|
| 31 |
+
print(f"Error: The file {image_path} was not found.")
|
| 32 |
+
return None
|
| 33 |
+
except Exception as e: # Added general exception handling
|
| 34 |
+
print(f"Error: {e}")
|
| 35 |
+
return None
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
#
|
| 39 |
+
# Build messages
|
| 40 |
+
#
|
| 41 |
+
def build_messages(message: dict, history: list[tuple]):
|
| 42 |
+
"""Build messages given message & history from a **multimodal** chat interface.
|
| 43 |
+
Args:
|
| 44 |
+
message: dictionary with keys: 'text', 'files'
|
| 45 |
+
history: list of tuples with (message, response)
|
| 46 |
+
|
| 47 |
+
Returns:
|
| 48 |
+
list of messages (to be sent to the model)
|
| 49 |
+
"""
|
| 50 |
+
logger.info(f"{message=}")
|
| 51 |
+
logger.info(f"{history=}")
|
| 52 |
+
# Get the user's text and list of images
|
| 53 |
+
user_text = message.get("text", "")
|
| 54 |
+
user_images = message.get("files", []) # List of images
|
| 55 |
+
|
| 56 |
+
# Build the message list including history
|
| 57 |
+
messages = []
|
| 58 |
+
combined_user_input = [] # Combine images and text if found in same turn.
|
| 59 |
+
for user_turn, bot_turn in history:
|
| 60 |
+
if isinstance(user_turn, tuple): # Image input
|
| 61 |
+
image_content = [
|
| 62 |
+
{
|
| 63 |
+
"type": "image_url",
|
| 64 |
+
"image_url": f"data:image/jpeg;base64,{encode_image(image)}"
|
| 65 |
+
} for image in user_turn
|
| 66 |
+
]
|
| 67 |
+
combined_user_input.extend(image_content)
|
| 68 |
+
elif isinstance(user_turn, str): # Text input
|
| 69 |
+
combined_user_input.append({"type": "text", "text": user_turn})
|
| 70 |
+
if combined_user_input and bot_turn:
|
| 71 |
+
messages.append({'role': 'user', 'content': combined_user_input})
|
| 72 |
+
messages.append({'role': 'assistant', 'content': [{"type": "text", "text": bot_turn}]})
|
| 73 |
+
combined_user_input = [] #reset the combined user input.
|
| 74 |
+
|
| 75 |
+
# Build the user message's content from the provided message
|
| 76 |
+
user_content = []
|
| 77 |
+
if user_text:
|
| 78 |
+
user_content.append({"type": "text", "text": user_text})
|
| 79 |
+
for image in user_images:
|
| 80 |
+
user_content.append(
|
| 81 |
+
{
|
| 82 |
+
"type": "image_url",
|
| 83 |
+
"image_url": f"data:image/jpeg;base64,{encode_image(image)}"
|
| 84 |
+
}
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
messages.append({'role': 'user', 'content': user_content})
|
| 88 |
+
logger.info(f"{messages=}")
|
| 89 |
+
|
| 90 |
+
return messages
|
| 91 |
+
|
| 92 |
+
#
|
| 93 |
+
# stream response
|
| 94 |
+
#
|
| 95 |
+
@spaces.GPU
|
| 96 |
+
@torch.inference_mode()
|
| 97 |
+
def stream_response(
|
| 98 |
+
messages: list[dict],
|
| 99 |
+
max_new_tokens: int=1_024,
|
| 100 |
+
temperature: float=0.15
|
| 101 |
+
):
|
| 102 |
+
"""Stream the model's response to the chat interface.
|
| 103 |
+
|
| 104 |
+
Args:
|
| 105 |
+
messages: list of messages to send to the model
|
| 106 |
+
"""
|
| 107 |
+
# Generate model's response
|
| 108 |
+
inputs = processor.apply_chat_template(
|
| 109 |
+
messages,
|
| 110 |
+
add_generation_prompt=True,
|
| 111 |
+
tokenize=True,
|
| 112 |
+
return_dict=True,
|
| 113 |
+
return_tensors="pt",
|
| 114 |
+
).to(model.device, dtype=torch.bfloat16)
|
| 115 |
+
|
| 116 |
+
# Generate
|
| 117 |
+
streamer = TextIteratorStreamer(
|
| 118 |
+
processor, skip_prompt=True, skip_special_tokens=True)
|
| 119 |
+
generation_args = dict(
|
| 120 |
+
inputs,
|
| 121 |
+
streamer=streamer,
|
| 122 |
+
max_new_tokens=max_new_tokens,
|
| 123 |
+
temperature=temperature,
|
| 124 |
+
top_p=0.9,
|
| 125 |
+
do_sample=True
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
thread = Thread(target=model.generate, kwargs=generation_args)
|
| 129 |
+
thread.start()
|
| 130 |
+
|
| 131 |
+
partial_message = ""
|
| 132 |
+
for new_text in streamer:
|
| 133 |
+
partial_message += new_text
|
| 134 |
+
yield partial_message
|
| 135 |
+
|