Spaces:
Sleeping
Sleeping
Create vlm.py
Browse files
vlm.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: vlm.py
|
3 |
+
Description: Vision language model utility functions.
|
4 |
+
Author: Didier Guillevic
|
5 |
+
Date: 2025-05-08
|
6 |
+
"""
|
7 |
+
|
8 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText
|
9 |
+
|
10 |
+
#
|
11 |
+
# Load the model: OPEA/Mistral-Small-3.1-24B-Instruct-2503-int4-AutoRound-awq-sym
|
12 |
+
#
|
13 |
+
model_id = "OPEA/Mistral-Small-3.1-24B-Instruct-2503-int4-AutoRound-awq-sym"
|
14 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
15 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
16 |
+
model = AutoModelForImageTextToText.from_pretrained(
|
17 |
+
model_id,
|
18 |
+
_attn_implementation="flash_attention_2",
|
19 |
+
torch_dtype=torch.bfloat16
|
20 |
+
).to(device)
|
21 |
+
|
22 |
+
#
|
23 |
+
# Encode images as base64
|
24 |
+
#
|
25 |
+
def encode_image(image_path):
|
26 |
+
"""Encode the image to base64."""
|
27 |
+
try:
|
28 |
+
with open(image_path, "rb") as image_file:
|
29 |
+
return base64.b64encode(image_file.read()).decode('utf-8')
|
30 |
+
except FileNotFoundError:
|
31 |
+
print(f"Error: The file {image_path} was not found.")
|
32 |
+
return None
|
33 |
+
except Exception as e: # Added general exception handling
|
34 |
+
print(f"Error: {e}")
|
35 |
+
return None
|
36 |
+
|
37 |
+
|
38 |
+
#
|
39 |
+
# Build messages
|
40 |
+
#
|
41 |
+
def build_messages(message: dict, history: list[tuple]):
|
42 |
+
"""Build messages given message & history from a **multimodal** chat interface.
|
43 |
+
Args:
|
44 |
+
message: dictionary with keys: 'text', 'files'
|
45 |
+
history: list of tuples with (message, response)
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
list of messages (to be sent to the model)
|
49 |
+
"""
|
50 |
+
logger.info(f"{message=}")
|
51 |
+
logger.info(f"{history=}")
|
52 |
+
# Get the user's text and list of images
|
53 |
+
user_text = message.get("text", "")
|
54 |
+
user_images = message.get("files", []) # List of images
|
55 |
+
|
56 |
+
# Build the message list including history
|
57 |
+
messages = []
|
58 |
+
combined_user_input = [] # Combine images and text if found in same turn.
|
59 |
+
for user_turn, bot_turn in history:
|
60 |
+
if isinstance(user_turn, tuple): # Image input
|
61 |
+
image_content = [
|
62 |
+
{
|
63 |
+
"type": "image_url",
|
64 |
+
"image_url": f"data:image/jpeg;base64,{encode_image(image)}"
|
65 |
+
} for image in user_turn
|
66 |
+
]
|
67 |
+
combined_user_input.extend(image_content)
|
68 |
+
elif isinstance(user_turn, str): # Text input
|
69 |
+
combined_user_input.append({"type": "text", "text": user_turn})
|
70 |
+
if combined_user_input and bot_turn:
|
71 |
+
messages.append({'role': 'user', 'content': combined_user_input})
|
72 |
+
messages.append({'role': 'assistant', 'content': [{"type": "text", "text": bot_turn}]})
|
73 |
+
combined_user_input = [] #reset the combined user input.
|
74 |
+
|
75 |
+
# Build the user message's content from the provided message
|
76 |
+
user_content = []
|
77 |
+
if user_text:
|
78 |
+
user_content.append({"type": "text", "text": user_text})
|
79 |
+
for image in user_images:
|
80 |
+
user_content.append(
|
81 |
+
{
|
82 |
+
"type": "image_url",
|
83 |
+
"image_url": f"data:image/jpeg;base64,{encode_image(image)}"
|
84 |
+
}
|
85 |
+
)
|
86 |
+
|
87 |
+
messages.append({'role': 'user', 'content': user_content})
|
88 |
+
logger.info(f"{messages=}")
|
89 |
+
|
90 |
+
return messages
|
91 |
+
|
92 |
+
#
|
93 |
+
# stream response
|
94 |
+
#
|
95 |
+
@spaces.GPU
|
96 |
+
@torch.inference_mode()
|
97 |
+
def stream_response(
|
98 |
+
messages: list[dict],
|
99 |
+
max_new_tokens: int=1_024,
|
100 |
+
temperature: float=0.15
|
101 |
+
):
|
102 |
+
"""Stream the model's response to the chat interface.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
messages: list of messages to send to the model
|
106 |
+
"""
|
107 |
+
# Generate model's response
|
108 |
+
inputs = processor.apply_chat_template(
|
109 |
+
messages,
|
110 |
+
add_generation_prompt=True,
|
111 |
+
tokenize=True,
|
112 |
+
return_dict=True,
|
113 |
+
return_tensors="pt",
|
114 |
+
).to(model.device, dtype=torch.bfloat16)
|
115 |
+
|
116 |
+
# Generate
|
117 |
+
streamer = TextIteratorStreamer(
|
118 |
+
processor, skip_prompt=True, skip_special_tokens=True)
|
119 |
+
generation_args = dict(
|
120 |
+
inputs,
|
121 |
+
streamer=streamer,
|
122 |
+
max_new_tokens=max_new_tokens,
|
123 |
+
temperature=temperature,
|
124 |
+
top_p=0.9,
|
125 |
+
do_sample=True
|
126 |
+
)
|
127 |
+
|
128 |
+
thread = Thread(target=model.generate, kwargs=generation_args)
|
129 |
+
thread.start()
|
130 |
+
|
131 |
+
partial_message = ""
|
132 |
+
for new_text in streamer:
|
133 |
+
partial_message += new_text
|
134 |
+
yield partial_message
|
135 |
+
|