Spaces:
Runtime error
Runtime error
Create llm.py
Browse files
llm.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
File: llm.py
|
| 3 |
+
Description: Large language model utility functions.
|
| 4 |
+
Author: Didier Guillevic
|
| 5 |
+
Date: 2025-05-03
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 9 |
+
from transformers import TextIteratorStreamer
|
| 10 |
+
import threading
|
| 11 |
+
import torch
|
| 12 |
+
|
| 13 |
+
import logging
|
| 14 |
+
logger = logging.getLogger(__name__)
|
| 15 |
+
logging.basicConfig(level=logging.INFO)
|
| 16 |
+
|
| 17 |
+
#
|
| 18 |
+
# Load the model: "Qwen/Qwen3-4B"
|
| 19 |
+
#
|
| 20 |
+
model_id = "Qwen/Qwen3-4B"
|
| 21 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 22 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 23 |
+
model_id,
|
| 24 |
+
torch_dtype="auto",
|
| 25 |
+
device_map="auto"
|
| 26 |
+
)
|
| 27 |
+
model = torch.compile(model)
|
| 28 |
+
model.eval() # inference mode
|
| 29 |
+
|
| 30 |
+
# Get end of thinking response token (used to split the response)
|
| 31 |
+
end_think_token_id = tokenizer.convert_tokens_to_ids("</think>")
|
| 32 |
+
|
| 33 |
+
# Output information about the model
|
| 34 |
+
def model_info(model):
|
| 35 |
+
# Number of parameters
|
| 36 |
+
total_params = sum(p.numel() for p in model.parameters())
|
| 37 |
+
|
| 38 |
+
# Estimated memory usage (in GB)
|
| 39 |
+
param_count = sum(p.numel() for p in model.parameters())
|
| 40 |
+
param_size = param_count * model.dtype.itemsize # in bytes
|
| 41 |
+
|
| 42 |
+
return {
|
| 43 |
+
"dtype": model.dtype,
|
| 44 |
+
"device": model.device,
|
| 45 |
+
"nb_parameters": f"{total_params / 1e6:.2f} M",
|
| 46 |
+
"size": f"{param_size / 1024**3:.2f} GB"
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
logger.info(f"{model_info(model)}")
|
| 50 |
+
|
| 51 |
+
#
|
| 52 |
+
# Build (text) messages
|
| 53 |
+
#
|
| 54 |
+
def build_messages(
|
| 55 |
+
message: str,
|
| 56 |
+
history: list[dict]
|
| 57 |
+
) -> list[dict]:
|
| 58 |
+
"""Build messages given message & history from a **text** chat interface.
|
| 59 |
+
|
| 60 |
+
Args:
|
| 61 |
+
message: user input
|
| 62 |
+
history: list of dictionaries (with user & assistant messages)
|
| 63 |
+
|
| 64 |
+
Returns:
|
| 65 |
+
list of messages (to be sent to the model)
|
| 66 |
+
"""
|
| 67 |
+
messages = history
|
| 68 |
+
# Add whether the model should think before responding
|
| 69 |
+
# (note that thinking is enabled by default, so we could omit ' /think')
|
| 70 |
+
messages.append({
|
| 71 |
+
'role': 'user',
|
| 72 |
+
'content': message
|
| 73 |
+
#'content': message + (' /think' if thinking else ' /no_think')
|
| 74 |
+
})
|
| 75 |
+
|
| 76 |
+
return messages
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
#
|
| 80 |
+
# Stream response
|
| 81 |
+
#
|
| 82 |
+
@torch.inference_mode()
|
| 83 |
+
def stream_response(
|
| 84 |
+
messages: list[dict],
|
| 85 |
+
enable_thinking: bool=True,
|
| 86 |
+
max_new_tokens: int=1_024
|
| 87 |
+
) -> tuple[str, str]:
|
| 88 |
+
"""Stream the model's response to the chat interface.
|
| 89 |
+
|
| 90 |
+
Args:
|
| 91 |
+
messages: list of messages (to be sent to the model)
|
| 92 |
+
thinking: boolean indicating whether the model should think before responding
|
| 93 |
+
|
| 94 |
+
Returns:
|
| 95 |
+
tuple of (thinking_response, final_response)
|
| 96 |
+
"""
|
| 97 |
+
# apply chat template and get model's inputs
|
| 98 |
+
model_prompt = tokenizer.apply_chat_template(
|
| 99 |
+
messages,
|
| 100 |
+
tokenize=False,
|
| 101 |
+
add_generation_prompt=True,
|
| 102 |
+
enable_thinking=enable_thinking
|
| 103 |
+
)
|
| 104 |
+
model_inputs = tokenizer(
|
| 105 |
+
[model_prompt,],
|
| 106 |
+
return_tensors="pt"
|
| 107 |
+
).to(model.device)
|
| 108 |
+
|
| 109 |
+
# get the model's response
|
| 110 |
+
streamer = TextIteratorStreamer(
|
| 111 |
+
tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 112 |
+
generation_kwargs = dict(
|
| 113 |
+
model_inputs,
|
| 114 |
+
streamer=streamer,
|
| 115 |
+
max_new_tokens=max_new_tokens,
|
| 116 |
+
do_sample=True,
|
| 117 |
+
temperature=0.6,
|
| 118 |
+
top_p=0.95,
|
| 119 |
+
top_k=20,
|
| 120 |
+
repetition_penalty=1.5,
|
| 121 |
+
min_p=0.0,
|
| 122 |
+
use_cache=True,
|
| 123 |
+
)
|
| 124 |
+
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
| 125 |
+
thread.start()
|
| 126 |
+
|
| 127 |
+
thinking_response = ""
|
| 128 |
+
final_response = ""
|
| 129 |
+
is_final_response = False
|
| 130 |
+
|
| 131 |
+
for text in streamer:
|
| 132 |
+
final_response += text
|
| 133 |
+
yield final_response
|