Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,83 +4,85 @@ import soundfile as sf
|
|
4 |
import os
|
5 |
import base64
|
6 |
import tempfile
|
|
|
|
|
|
|
7 |
|
8 |
-
# --- Model
|
9 |
try:
|
10 |
classifier = pipeline("audio-classification", model="superb/wav2vec2-base-superb-er")
|
11 |
except Exception as e:
|
12 |
-
def error_fn(audio_file):
|
13 |
-
return {"error": f"Failed to load the model. Please check the logs. Error: {str(e)}"}
|
14 |
classifier = None
|
|
|
|
|
|
|
15 |
|
16 |
-
# --- Prediction Function ---
|
17 |
def predict_emotion(audio_file):
|
18 |
-
if classifier is None:
|
19 |
-
return {"error": "
|
20 |
-
|
21 |
-
if audio_file is None:
|
22 |
return {"error": "No audio input provided."}
|
23 |
-
|
24 |
-
# Handle different input types
|
25 |
-
if isinstance(audio_file, str):
|
26 |
-
audio_path = audio_file
|
27 |
-
elif isinstance(audio_file, tuple):
|
28 |
-
sample_rate, audio_array = audio_file
|
29 |
-
temp_audio_path = "temp_audio_from_mic.wav"
|
30 |
-
sf.write(temp_audio_path, audio_array, sample_rate)
|
31 |
-
audio_path = temp_audio_path
|
32 |
-
else:
|
33 |
-
return {"error": f"Invalid audio input format: {type(audio_file)}"}
|
34 |
-
|
35 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
results = classifier(audio_path, top_k=5)
|
37 |
return {item['label']: round(item['score'], 3) for item in results}
|
38 |
-
except Exception as e:
|
39 |
-
return {"error": f"
|
40 |
finally:
|
41 |
-
if 'temp_audio_path' in locals() and os.path.exists(temp_audio_path):
|
42 |
os.remove(temp_audio_path)
|
43 |
|
44 |
-
# ---
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
"""
|
50 |
if classifier is None:
|
51 |
-
return {"error": "
|
52 |
|
53 |
try:
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
59 |
temp_file.write(audio_data)
|
60 |
temp_audio_path = temp_file.name
|
61 |
-
|
62 |
-
# Predict emotion
|
63 |
results = classifier(temp_audio_path, top_k=5)
|
64 |
-
|
65 |
-
# Clean up temp file
|
66 |
os.unlink(temp_audio_path)
|
67 |
-
|
68 |
return {item['label']: round(item['score'], 3) for item in results}
|
69 |
-
|
70 |
except Exception as e:
|
71 |
-
return {"error": f"
|
72 |
|
73 |
-
# --- Gradio
|
74 |
-
|
75 |
-
iface = gr.Interface(
|
76 |
fn=predict_emotion,
|
77 |
-
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath", label="Upload Audio or Record
|
78 |
-
outputs=gr.Label(num_top_classes=5, label="Emotion
|
79 |
-
title="
|
80 |
-
description="Upload
|
81 |
-
|
82 |
)
|
83 |
|
84 |
-
#
|
|
|
|
|
|
|
85 |
if __name__ == "__main__":
|
86 |
-
|
|
|
|
4 |
import os
|
5 |
import base64
|
6 |
import tempfile
|
7 |
+
from fastapi import FastAPI, Request
|
8 |
+
from fastapi.responses import JSONResponse
|
9 |
+
import uvicorn
|
10 |
|
11 |
+
# --- Load Model ---
|
12 |
try:
|
13 |
classifier = pipeline("audio-classification", model="superb/wav2vec2-base-superb-er")
|
14 |
except Exception as e:
|
|
|
|
|
15 |
classifier = None
|
16 |
+
model_load_error = str(e)
|
17 |
+
else:
|
18 |
+
model_load_error = None
|
19 |
|
20 |
+
# --- Gradio Prediction Function ---
|
21 |
def predict_emotion(audio_file):
|
22 |
+
if classifier is None:
|
23 |
+
return {"error": f"Model load failed: {model_load_error}"}
|
24 |
+
if audio_file is None:
|
|
|
25 |
return {"error": "No audio input provided."}
|
26 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
try:
|
28 |
+
if isinstance(audio_file, str):
|
29 |
+
audio_path = audio_file
|
30 |
+
elif isinstance(audio_file, tuple):
|
31 |
+
sample_rate, audio_array = audio_file
|
32 |
+
temp_audio_path = "temp_audio.wav"
|
33 |
+
sf.write(temp_audio_path, audio_array, sample_rate)
|
34 |
+
audio_path = temp_audio_path
|
35 |
+
else:
|
36 |
+
return {"error": f"Unsupported input type: {type(audio_file)}"}
|
37 |
+
|
38 |
results = classifier(audio_path, top_k=5)
|
39 |
return {item['label']: round(item['score'], 3) for item in results}
|
40 |
+
except Exception as e:
|
41 |
+
return {"error": f"Prediction error: {str(e)}"}
|
42 |
finally:
|
43 |
+
if 'temp_audio_path' in locals() and os.path.exists(temp_audio_path):
|
44 |
os.remove(temp_audio_path)
|
45 |
|
46 |
+
# --- FastAPI App for Base64 API ---
|
47 |
+
app = FastAPI()
|
48 |
+
|
49 |
+
@app.post("/api/predict/")
|
50 |
+
async def predict_emotion_api(request: Request):
|
|
|
51 |
if classifier is None:
|
52 |
+
return JSONResponse(content={"error": f"Model load failed: {model_load_error}"}, status_code=500)
|
53 |
|
54 |
try:
|
55 |
+
body = await request.json()
|
56 |
+
base64_audio = body.get("data")
|
57 |
+
if not base64_audio:
|
58 |
+
return JSONResponse(content={"error": "Missing 'data' field with base64 audio."}, status_code=400)
|
59 |
+
|
60 |
+
audio_data = base64.b64decode(base64_audio)
|
61 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
|
62 |
temp_file.write(audio_data)
|
63 |
temp_audio_path = temp_file.name
|
64 |
+
|
|
|
65 |
results = classifier(temp_audio_path, top_k=5)
|
|
|
|
|
66 |
os.unlink(temp_audio_path)
|
67 |
+
|
68 |
return {item['label']: round(item['score'], 3) for item in results}
|
|
|
69 |
except Exception as e:
|
70 |
+
return JSONResponse(content={"error": f"API prediction failed: {str(e)}"}, status_code=500)
|
71 |
|
72 |
+
# --- Gradio UI ---
|
73 |
+
gradio_interface = gr.Interface(
|
|
|
74 |
fn=predict_emotion,
|
75 |
+
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath", label="Upload Audio or Record"),
|
76 |
+
outputs=gr.Label(num_top_classes=5, label="Emotion Predictions"),
|
77 |
+
title="Audio Emotion Detector",
|
78 |
+
description="Upload or record your voice to detect emotions.",
|
79 |
+
allow_flagging="never"
|
80 |
)
|
81 |
|
82 |
+
# --- Mount Gradio inside FastAPI ---
|
83 |
+
app = gr.mount_gradio_app(app, gradio_interface, path="/")
|
84 |
+
|
85 |
+
# --- Launch for local/dev use only ---
|
86 |
if __name__ == "__main__":
|
87 |
+
gradio_interface.queue()
|
88 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|