Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -17,9 +17,10 @@ except Exception as e:
|
|
17 |
else:
|
18 |
model_load_error = None
|
19 |
|
20 |
-
# --- FastAPI App
|
21 |
app = FastAPI()
|
22 |
|
|
|
23 |
@app.post("/api/predict/")
|
24 |
async def predict_emotion_api(request: Request):
|
25 |
if classifier is None:
|
@@ -39,38 +40,52 @@ async def predict_emotion_api(request: Request):
|
|
39 |
header, encoded = base64_with_prefix.split(",", 1)
|
40 |
audio_data = base64.b64decode(encoded)
|
41 |
except (ValueError, TypeError):
|
42 |
-
return JSONResponse(content={"error": "Invalid base64 data format."}, status_code=400)
|
43 |
|
44 |
-
# Write to a temporary file for the pipeline
|
45 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
|
46 |
temp_file.write(audio_data)
|
47 |
temp_audio_path = temp_file.name
|
48 |
|
49 |
-
results = classifier(temp_audio_path
|
50 |
os.unlink(temp_audio_path) # Clean up the temp file
|
51 |
|
52 |
-
#
|
|
|
|
|
53 |
return JSONResponse(content={"data": results})
|
54 |
|
55 |
except Exception as e:
|
|
|
|
|
|
|
56 |
return JSONResponse(content={"error": f"Internal server error during prediction: {str(e)}"}, status_code=500)
|
57 |
|
58 |
-
# --- Gradio UI
|
59 |
-
def gradio_predict_wrapper(
|
60 |
-
|
61 |
-
if
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
gradio_interface = gr.Interface(
|
66 |
fn=gradio_predict_wrapper,
|
67 |
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath", label="Upload Audio or Record"),
|
68 |
outputs=gr.Label(num_top_classes=5, label="Emotion Predictions"),
|
69 |
title="Audio Emotion Detector",
|
70 |
-
description="This UI is for direct demonstration. The primary API is at /api/predict/",
|
71 |
allow_flagging="never"
|
72 |
)
|
73 |
|
74 |
-
#
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
17 |
else:
|
18 |
model_load_error = None
|
19 |
|
20 |
+
# --- FastAPI App ---
|
21 |
app = FastAPI()
|
22 |
|
23 |
+
# This is our dedicated, robust API endpoint
|
24 |
@app.post("/api/predict/")
|
25 |
async def predict_emotion_api(request: Request):
|
26 |
if classifier is None:
|
|
|
40 |
header, encoded = base64_with_prefix.split(",", 1)
|
41 |
audio_data = base64.b64decode(encoded)
|
42 |
except (ValueError, TypeError):
|
43 |
+
return JSONResponse(content={"error": "Invalid base64 data format. Please send the full data URI."}, status_code=400)
|
44 |
|
45 |
+
# Write to a temporary file for the pipeline to process
|
46 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
|
47 |
temp_file.write(audio_data)
|
48 |
temp_audio_path = temp_file.name
|
49 |
|
50 |
+
results = classifier(temp_audio_path)
|
51 |
os.unlink(temp_audio_path) # Clean up the temp file
|
52 |
|
53 |
+
# The transformers pipeline returns a list of dicts
|
54 |
+
# Example: [{'score': 0.99, 'label': 'happy'}, {'score': 0.01, 'label': 'sad'}]
|
55 |
+
# We will return this directly
|
56 |
return JSONResponse(content={"data": results})
|
57 |
|
58 |
except Exception as e:
|
59 |
+
# Clean up the temp file if it exists even after an error
|
60 |
+
if 'temp_audio_path' in locals() and os.path.exists(temp_audio_path):
|
61 |
+
os.unlink(temp_audio_path)
|
62 |
return JSONResponse(content={"error": f"Internal server error during prediction: {str(e)}"}, status_code=500)
|
63 |
|
64 |
+
# --- Gradio UI (for demonstration on the Space's page) ---
|
65 |
+
def gradio_predict_wrapper(audio_file_path):
|
66 |
+
if classifier is None: return {"error": f"Model is not loaded: {model_load_error}"}
|
67 |
+
if audio_file_path is None: return {"error": "Please provide an audio file."}
|
68 |
+
|
69 |
+
try:
|
70 |
+
results = classifier(audio_file_path, top_k=5)
|
71 |
+
# Format for Gradio's Label component
|
72 |
+
return {item['label']: item['score'] for item in results}
|
73 |
+
except Exception as e:
|
74 |
+
return {"error": str(e)}
|
75 |
|
76 |
gradio_interface = gr.Interface(
|
77 |
fn=gradio_predict_wrapper,
|
78 |
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath", label="Upload Audio or Record"),
|
79 |
outputs=gr.Label(num_top_classes=5, label="Emotion Predictions"),
|
80 |
title="Audio Emotion Detector",
|
81 |
+
description="This UI is for direct demonstration. The primary API for websites is at /api/predict/",
|
82 |
allow_flagging="never"
|
83 |
)
|
84 |
|
85 |
+
# Mount the Gradio UI onto a subpath of our FastAPI app
|
86 |
+
app = gr.mount_gradio_app(app, gradio_interface, path="/gradio")
|
87 |
+
|
88 |
+
# The Uvicorn server launch command (used by Hugging Face Spaces)
|
89 |
+
# This is the ONLY launch command needed.
|
90 |
+
if __name__ == "__main__":
|
91 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|