Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ from transformers import pipeline
|
|
3 |
import soundfile as sf
|
4 |
import os
|
5 |
|
6 |
-
# --- Model Loading ---
|
7 |
try:
|
8 |
classifier = pipeline("audio-classification", model="superb/wav2vec2-base-superb-er")
|
9 |
except Exception as e:
|
@@ -11,36 +10,23 @@ except Exception as e:
|
|
11 |
return {"error": f"Failed to load the model. Please check the logs. Error: {str(e)}"}
|
12 |
classifier = None
|
13 |
|
14 |
-
# --- Prediction Function ---
|
15 |
def predict_emotion(audio_file):
|
16 |
-
if classifier is None:
|
17 |
-
|
18 |
-
if audio_file
|
19 |
-
return {"error": "No audio input provided."}
|
20 |
-
|
21 |
-
if isinstance(audio_file, str):
|
22 |
-
audio_path = audio_file
|
23 |
elif isinstance(audio_file, tuple):
|
24 |
sample_rate, audio_array = audio_file
|
25 |
temp_audio_path = "temp_audio_from_mic.wav"
|
26 |
sf.write(temp_audio_path, audio_array, sample_rate)
|
27 |
audio_path = temp_audio_path
|
28 |
-
else:
|
29 |
-
return {"error": f"Invalid audio input format: {type(audio_file)}"}
|
30 |
-
|
31 |
try:
|
32 |
results = classifier(audio_path, top_k=5)
|
33 |
-
|
34 |
-
|
35 |
-
except Exception as e:
|
36 |
-
return {"error": f"An error occurred during prediction: {str(e)}"}
|
37 |
finally:
|
38 |
-
if 'temp_audio_path' in locals() and os.path.exists(temp_audio_path):
|
39 |
-
os.remove(temp_audio_path)
|
40 |
-
|
41 |
|
42 |
-
# --- Gradio Interface ---
|
43 |
-
# We have REMOVED the api_name parameter to revert to the default endpoint.
|
44 |
iface = gr.Interface(
|
45 |
fn=predict_emotion,
|
46 |
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath", label="Upload Audio or Record with Microphone"),
|
@@ -49,6 +35,5 @@ iface = gr.Interface(
|
|
49 |
description="Upload an audio file or record your voice to detect emotions.",
|
50 |
)
|
51 |
|
52 |
-
# Launch the Gradio app with the API queue enabled
|
53 |
if __name__ == "__main__":
|
54 |
iface.queue().launch()
|
|
|
3 |
import soundfile as sf
|
4 |
import os
|
5 |
|
|
|
6 |
try:
|
7 |
classifier = pipeline("audio-classification", model="superb/wav2vec2-base-superb-er")
|
8 |
except Exception as e:
|
|
|
10 |
return {"error": f"Failed to load the model. Please check the logs. Error: {str(e)}"}
|
11 |
classifier = None
|
12 |
|
|
|
13 |
def predict_emotion(audio_file):
|
14 |
+
if classifier is None: return {"error": "The AI model could not be loaded."}
|
15 |
+
if audio_file is None: return {"error": "No audio input provided."}
|
16 |
+
if isinstance(audio_file, str): audio_path = audio_file
|
|
|
|
|
|
|
|
|
17 |
elif isinstance(audio_file, tuple):
|
18 |
sample_rate, audio_array = audio_file
|
19 |
temp_audio_path = "temp_audio_from_mic.wav"
|
20 |
sf.write(temp_audio_path, audio_array, sample_rate)
|
21 |
audio_path = temp_audio_path
|
22 |
+
else: return {"error": f"Invalid audio input format: {type(audio_file)}"}
|
|
|
|
|
23 |
try:
|
24 |
results = classifier(audio_path, top_k=5)
|
25 |
+
return {item['label']: round(item['score'], 3) for item in results}
|
26 |
+
except Exception as e: return {"error": f"An error occurred during prediction: {str(e)}"}
|
|
|
|
|
27 |
finally:
|
28 |
+
if 'temp_audio_path' in locals() and os.path.exists(temp_audio_path): os.remove(temp_audio_path)
|
|
|
|
|
29 |
|
|
|
|
|
30 |
iface = gr.Interface(
|
31 |
fn=predict_emotion,
|
32 |
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath", label="Upload Audio or Record with Microphone"),
|
|
|
35 |
description="Upload an audio file or record your voice to detect emotions.",
|
36 |
)
|
37 |
|
|
|
38 |
if __name__ == "__main__":
|
39 |
iface.queue().launch()
|