Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,42 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
grayed_image = np.mean(image, 2)
|
6 |
-
image_max = np.max(grayed_image)
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
return grayed_image
|
12 |
|
13 |
app = gr.Interface(
|
14 |
-
|
15 |
-
'
|
16 |
-
gr.
|
17 |
-
examples=[
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
],
|
22 |
live=True
|
23 |
)
|
24 |
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from torchvision import transforms, dataset, models
|
6 |
|
7 |
+
transformer = models.ResNet18_Weights.IMAGENET1K_V1.transforms()
|
|
|
|
|
8 |
|
9 |
+
device = torch.device("cpu")
|
10 |
+
class_names = ['Anger', 'Disgust', 'Fear', 'Happy', 'Pain', 'Sad']
|
11 |
+
classes_count = len(class_names)
|
12 |
+
|
13 |
+
model = model.renset18(weights='DEFAULT').to(device)
|
14 |
+
model.fc = nn.Sequential(
|
15 |
+
nn.Linear(512, classes_count)
|
16 |
+
)
|
17 |
+
model.load_state_dict(torch.load('./model_param.pt', map_location=device), strict=False)
|
18 |
+
|
19 |
+
def predict(image):
|
20 |
+
image = transformer(image).unsqueeze(0).to(device)
|
21 |
+
model.eval()
|
22 |
+
|
23 |
+
with torch.inference_mode():
|
24 |
+
pred = torch.softmax(model(image), dim=1)
|
25 |
+
|
26 |
+
preds_and_labels = {class_names[i]: pred[0][i].item() for i in range(len(pred[0]))}
|
27 |
+
|
28 |
+
return preds_and_labels
|
29 |
|
|
|
30 |
|
31 |
app = gr.Interface(
|
32 |
+
predict,
|
33 |
+
gr.Image(type='pil'),
|
34 |
+
gr.Label(label='Predictions', num_top_classes=classes_count),
|
35 |
+
#examples=[
|
36 |
+
# './example1.jpg',
|
37 |
+
# './example2.jpg',
|
38 |
+
# './example3.jpg',
|
39 |
+
#],
|
40 |
live=True
|
41 |
)
|
42 |
|