Dimitre commited on
Commit
0277979
·
1 Parent(s): f85da4b

Debugin code

Browse files
Files changed (2) hide show
  1. app.py +9 -11
  2. requirements.txt +1 -2
app.py CHANGED
@@ -4,16 +4,14 @@ from git import Repo
4
  Repo.clone_from("https://github.com/dimitreOliveira/hub.git", "./hub")
5
  sys.path.append("/hub")
6
 
7
- import requests
8
- # Download human-readable labels for ImageNet.
9
- response = requests.get("https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt")
10
- labels = [x for x in response.text.split("\n") if x != ""]
11
-
12
-
13
  import gradio as gr
14
- import tensorflow as tf
15
  from hub.tensorflow_hub.hf_utils import pull_from_hub
16
 
 
 
 
 
 
17
  model = pull_from_hub(repo_id="Dimitre/mobilenet_v3_small")
18
 
19
  def preprocess(image):
@@ -25,14 +23,14 @@ def preprocess(image):
25
  print(image / 255.)
26
  return image / 255.
27
 
28
- def postprocess(prediction):
29
- return {labels[i]: prediction[i] for i in range(len(labels))}
30
 
31
  def predict_fn(image):
32
  image = preprocess(image)
33
  prediction = model([image])
34
- scores = postprocess(prediction)
35
- return scores
36
 
37
  iface = gr.Interface(fn=predict_fn,
38
  inputs=gr.Image(shape=(224, 224)),
 
4
  Repo.clone_from("https://github.com/dimitreOliveira/hub.git", "./hub")
5
  sys.path.append("/hub")
6
 
 
 
 
 
 
 
7
  import gradio as gr
 
8
  from hub.tensorflow_hub.hf_utils import pull_from_hub
9
 
10
+ # import requests
11
+ # # Download human-readable labels for ImageNet.
12
+ # response = requests.get("https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt")
13
+ # labels = [x for x in response.text.split("\n") if x != ""]
14
+
15
  model = pull_from_hub(repo_id="Dimitre/mobilenet_v3_small")
16
 
17
  def preprocess(image):
 
23
  print(image / 255.)
24
  return image / 255.
25
 
26
+ # def postprocess(prediction):
27
+ # return {labels[i]: prediction[i] for i in range(len(labels))}
28
 
29
  def predict_fn(image):
30
  image = preprocess(image)
31
  prediction = model([image])
32
+ # scores = postprocess(prediction)
33
+ return prediction
34
 
35
  iface = gr.Interface(fn=predict_fn,
36
  inputs=gr.Image(shape=(224, 224)),
requirements.txt CHANGED
@@ -1,2 +1 @@
1
- GitPython
2
- tensorflow
 
1
+ GitPython