Dimitre commited on
Commit
80028a8
·
1 Parent(s): 524e94c

Adding probs

Browse files
Files changed (1) hide show
  1. app.py +4 -17
app.py CHANGED
@@ -5,6 +5,7 @@ Repo.clone_from("https://github.com/dimitreOliveira/hub.git", "./hub")
5
  sys.path.append("/hub")
6
 
7
  import gradio as gr
 
8
  from hub.tensorflow_hub.hf_utils import pull_from_hub
9
 
10
  import requests
@@ -20,26 +21,12 @@ def preprocess(image):
20
 
21
  def postprocess(prediction):
22
  return {labels[i]: float(prediction[i]) for i in range(len(labels))}
23
- # return {labels[i]: 0 for i in range(len(labels))}
24
 
25
  def predict_fn(image):
26
  image = preprocess(image)
27
- prediction = model(image)[0].numpy()
28
- print('****************')
29
- print(prediction)
30
- try:
31
- print("default")
32
- print({labels[i]: float(prediction[i]) for i in range(len(labels))})
33
- except:
34
- print("default gives error")
35
- print('****************')
36
- print(list(prediction))
37
- try:
38
- print("list")
39
- print({labels[i]: list(prediction)[i] for i in range(len(labels))})
40
- except:
41
- print("list gives error")
42
- scores = postprocess(prediction)
43
  return scores
44
 
45
  iface = gr.Interface(fn=predict_fn,
 
5
  sys.path.append("/hub")
6
 
7
  import gradio as gr
8
+ import tensorflow as tf
9
  from hub.tensorflow_hub.hf_utils import pull_from_hub
10
 
11
  import requests
 
21
 
22
  def postprocess(prediction):
23
  return {labels[i]: float(prediction[i]) for i in range(len(labels))}
 
24
 
25
  def predict_fn(image):
26
  image = preprocess(image)
27
+ logits = model(image)
28
+ probs = tf.nn.softmax(logits, axis=1)[0].numpy()
29
+ scores = postprocess(probs)
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  return scores
31
 
32
  iface = gr.Interface(fn=predict_fn,