File size: 11,327 Bytes
ad493ec
fb65e18
ad493ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb65e18
ad493ec
 
fb65e18
 
ad493ec
 
 
 
 
fb65e18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad493ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb65e18
ad493ec
 
 
fb65e18
ad493ec
 
 
 
 
 
 
 
fb65e18
 
 
 
ad493ec
 
fb65e18
 
 
 
 
 
 
 
 
 
 
 
ad493ec
 
fb65e18
 
 
ad493ec
 
 
fb65e18
ad493ec
fb65e18
 
 
ad493ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import typing
import types  # fusion of forward() of Wav2Vec2
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import spaces
import torch
import torch.nn as nn
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2Model
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel

import audiofile
import audresample


device = 0 if torch.cuda.is_available() else "cpu"
duration = 2  # limit processing of audio
age_gender_model_name = "audeering/wav2vec2-large-robust-24-ft-age-gender"
expression_model_name = "audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim"


class AgeGenderHead(nn.Module):
    r"""Age-gender model head."""

    def __init__(self, config, num_labels):

        super().__init__()

        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.final_dropout)
        self.out_proj = nn.Linear(config.hidden_size, num_labels)

    def forward(self, features, **kwargs):

        x = features
        x = self.dropout(x)
        x = self.dense(x)
        x = torch.tanh(x)
        x = self.dropout(x)
        x = self.out_proj(x)

        return x


class AgeGenderModel(Wav2Vec2PreTrainedModel):
    r"""Age-gender recognition model."""

    def __init__(self, config):

        super().__init__(config)

        self.config = config
        self.wav2vec2 = Wav2Vec2Model(config)
        self.age = AgeGenderHead(config, 1)
        self.gender = AgeGenderHead(config, 3)
        self.init_weights()

    def forward(
            self,
            frozen_cnn7,
    ):

        hidden_states = self.wav2vec2(frozen_cnn7=frozen_cnn7)  # runs only Transformer layers

        hidden_states = torch.mean(hidden_states, dim=1)
        logits_age = self.age(hidden_states)
        logits_gender = torch.softmax(self.gender(hidden_states), dim=1)

        return hidden_states, logits_age, logits_gender
    
    
    
# == Fusion = Define Age Wav2Vec2Model's forward to accept already computed CNN7 features from Emotion
    def _forward(
        self,
        extract_features,
        attention_mask=None):
        # extract_features : CNN7 fetures of wav2vec2 as they are calc. from CNN7 feature extractor


        if attention_mask is not None:
            # compute reduced attention_mask corresponding to feature vectors
            attention_mask = self._get_feature_vector_attention_mask(
                extract_features.shape[1], attention_mask, add_adapter=False
            )

        hidden_states, extract_features = self.feature_projection(extract_features)
        hidden_states = self._mask_hidden_states(
            hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
        )

        encoder_outputs = self.encoder(
            hidden_states,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = encoder_outputs[0]

        if self.adapter is not None:
            raise ValueError
            hidden_states = self.adapter(hidden_states)

        return hidden_states
# ===============================================


# ================== Foward & CNN features
    def _forward_and_cnn7(
        self,
        input_values,
        attention_mask=None
        ):
        

        frozen_cnn7 = self.feature_extractor(input_values)
        frozen_cnn7 = frozen_cnn7.transpose(1, 2)

        if attention_mask is not None:
            # compute reduced attention_mask corresponding to feature vectors
            attention_mask = self._get_feature_vector_attention_mask(
                frozen_cnn7.shape[1], attention_mask, add_adapter=False
            )

        hidden_states, extract_features = self.feature_projection(frozen_cnn7)  # grad=True non frozen
        hidden_states = self._mask_hidden_states(
            hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
        )

        encoder_outputs = self.encoder(
            hidden_states,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = encoder_outputs[0]

        if self.adapter is not None:
            raise ValueError
            hidden_states = self.adapter(hidden_states)

        return hidden_states, frozen_cnn7  # feature_projection is trainable thus we are unable to use the projected hidden states from official wav2vev2.forward

# =============================


class ExpressionHead(nn.Module):
    r"""Expression model head."""

    def __init__(self, config):

        super().__init__()

        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.final_dropout)
        self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, features, **kwargs):

        x = features
        x = self.dropout(x)
        x = self.dense(x)
        x = torch.tanh(x)
        x = self.dropout(x)
        x = self.out_proj(x)

        return x


class ExpressionModel(Wav2Vec2PreTrainedModel):
    r"""speech expression model."""

    def __init__(self, config):

        super().__init__(config)

        self.config = config
        self.wav2vec2 = Wav2Vec2Model(config)
        self.classifier = ExpressionHead(config)
        self.init_weights()

    def forward(self, input_values):
        hidden_states, frozen_cnn7 = self.wav2vec2(input_values)
        hidden_states = torch.mean(hidden_states, dim=1)
        logits = self.classifier(hidden_states)

        return hidden_states, logits, frozen_cnn7


# Load models from hub
age_gender_processor = Wav2Vec2Processor.from_pretrained(age_gender_model_name)
age_gender_model = AgeGenderModel.from_pretrained(age_gender_model_name)
expression_processor = Wav2Vec2Processor.from_pretrained(expression_model_name)
expression_model = ExpressionModel.from_pretrained(expression_model_name)

# Emotion Calc. CNN features

age_gender_model.wav2vec2.forward = types.MethodType(_forward, age_gender_model)
expression_model.wav2vec2.forward = types.MethodType(_forward_and_cnn7, expression_model)

def process_func(x: np.ndarray, sampling_rate: int) -> typing.Tuple[str, dict, str]:
    
    # batch audio
    y = expression_processor(x, sampling_rate=sampling_rate)
    y = y['input_values'][0]
    y = y.reshape(1, -1)
    y = torch.from_numpy(y).to(device)

    # run through expression model
    with torch.no_grad():
        _, logits_expression, frozen_cnn7 = expression_model(y)

        _, logits_age, logits_gender = age_gender_model(frozen_cnn7=frozen_cnn7)

    # Plot A/D/V values
    plot_expression(logits_expression[0, 0].item(), # implicit detach().cpu().numpy()
                    logits_expression[0, 1].item(),
                    logits_expression[0, 2].item())
    expression_file = "expression.png"
    plt.savefig(expression_file)
    return (
        f"{round(100 * logits_age[0, 0].item())} years",  # age
        {
            "female": logits_gender[0, 0].item(),
            "male": logits_gender[0, 1].item(),
            "child": logits_gender[0, 2].item(),
        },
        expression_file,
    )


@spaces.GPU
def recognize(input_file: str) -> typing.Tuple[str, dict, str]:
    # sampling_rate, signal = input_microphone
    # signal = signal.astype(np.float32, order="C") / 32768.0
    if input_file is None:
        raise gr.Error(
            "No audio file submitted! "
            "Please upload or record an audio file "
            "before submitting your request."
        )

    signal, sampling_rate = audiofile.read(input_file, duration=duration)
    # Resample to sampling rate supported byu the models
    target_rate = 16000
    signal = audresample.resample(signal, sampling_rate, target_rate)

    return process_func(signal, target_rate)


def plot_expression(arousal, dominance, valence):
    r"""3D pixel plot of arousal, dominance, valence."""
    # Voxels per dimension
    voxels = 7
    # Create voxel grid
    x, y, z = np.indices((voxels + 1, voxels + 1, voxels + 1))
    voxel = (
        (x == round(arousal * voxels))
        & (y == round(dominance * voxels))
        & (z == round(valence * voxels))
    )
    projection = (
        (x == round(arousal * voxels))
        & (y == round(dominance * voxels))
        & (z < round(valence * voxels))
    )
    colors = np.empty((voxel | projection).shape, dtype=object)
    colors[voxel] = "#fcb06c"
    colors[projection] = "#fed7a9"
    ax = plt.figure().add_subplot(projection='3d')
    ax.voxels(voxel | projection, facecolors=colors, edgecolor='k')
    ax.set_xlim([0, voxels])
    ax.set_ylim([0, voxels])
    ax.set_zlim([0, voxels])
    ax.set_aspect("equal")
    ax.set_xlabel("arousal", fontsize="large", labelpad=0)
    ax.set_ylabel("dominance", fontsize="large", labelpad=0)
    ax.set_zlabel("valence", fontsize="large", labelpad=0)
    ax.set_xticks(
        list(range(voxels + 1)),
        labels=[0, None, None, None, None, None, None, 1],
        verticalalignment="bottom",
    )
    ax.set_yticks(
        list(range(voxels + 1)),
        labels=[0, None, None, None, None, None, None, 1],
        verticalalignment="bottom",
    )
    ax.set_zticks(
        list(range(voxels + 1)),
        labels=[0, None, None, None, None, None, None, 1],
        verticalalignment="top",
    )



description = (
    "Estimate **age**, **gender**, and **expression** "
    "of the speaker contained in an audio file or microphone recording.  \n"
    f"The model [{age_gender_model_name}]"
    f"(https://huggingface.co/{age_gender_model_name}) "
    "recognises age and gender, "
    f"whereas [{expression_model_name}]"
    f"(https://huggingface.co/{expression_model_name}) "
    "recognises the expression dimensions arousal, dominance, and valence. "
)

with gr.Blocks() as demo:
    with gr.Tab(label="Speech analysis"):
        with gr.Row():
            with gr.Column():
                gr.Markdown(description)
                input = gr.Audio(
                    sources=["upload", "microphone"],
                    type="filepath",
                    label="Audio input",
                    min_length=0.025,  # seconds
                )
                gr.Examples(
                    [
                        "female-46-neutral.wav",
                        "female-20-happy.wav",
                        "male-60-angry.wav",
                        "male-27-sad.wav",
                    ],
                    [input],
                    label="Examples from CREMA-D, ODbL v1.0 license",
                )
                gr.Markdown("Only the first two seconds of the audio will be processed.")
                submit_btn = gr.Button(value="Submit")
            with gr.Column():
                output_age = gr.Textbox(label="Age")
                output_gender = gr.Label(label="Gender")
                output_expression = gr.Image(label="Expression")

        outputs = [output_age, output_gender, output_expression]
        submit_btn.click(recognize, input, outputs)


demo.launch(debug=True)