Spaces:
Running
Running
fusion f
Browse files
app.py
CHANGED
@@ -71,82 +71,78 @@ class AgeGenderModel(Wav2Vec2PreTrainedModel):
|
|
71 |
|
72 |
|
73 |
|
74 |
-
#
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
)
|
87 |
-
|
88 |
-
hidden_states, extract_features = self.feature_projection(extract_features)
|
89 |
-
hidden_states = self._mask_hidden_states(
|
90 |
-
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
|
91 |
)
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
output_hidden_states=output_hidden_states,
|
98 |
-
return_dict=return_dict,
|
99 |
-
)
|
100 |
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
|
104 |
-
raise ValueError
|
105 |
-
hidden_states = self.adapter(hidden_states)
|
106 |
|
107 |
-
|
108 |
-
|
|
|
109 |
|
|
|
110 |
|
111 |
-
# ================== Foward & CNN features
|
112 |
-
def _forward_and_cnn7(
|
113 |
-
self,
|
114 |
-
input_values,
|
115 |
-
attention_mask=None
|
116 |
-
):
|
117 |
-
|
118 |
|
119 |
-
|
120 |
-
|
|
|
|
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
attention_mask = self._get_feature_vector_attention_mask(
|
125 |
-
frozen_cnn7.shape[1], attention_mask, add_adapter=False
|
126 |
-
)
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
131 |
)
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
-
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
|
147 |
-
|
148 |
|
149 |
-
# =============================
|
150 |
|
151 |
|
152 |
class ExpressionHead(nn.Module):
|
|
|
71 |
|
72 |
|
73 |
|
74 |
+
# Fusion = AgeWav2Vec2Model forward() will accept already computed CNN7 features from ExpressioNmodel forward()
|
75 |
+
def _forward(
|
76 |
+
self,
|
77 |
+
extract_features,
|
78 |
+
attention_mask=None):
|
79 |
+
# extract_features : CNN7 fetures of wav2vec2 as they are calc. from CNN7 feature extractor
|
80 |
+
|
81 |
+
|
82 |
+
if attention_mask is not None:
|
83 |
+
# compute reduced attention_mask corresponding to feature vectors
|
84 |
+
attention_mask = self._get_feature_vector_attention_mask(
|
85 |
+
extract_features.shape[1], attention_mask, add_adapter=False
|
|
|
|
|
|
|
|
|
|
|
86 |
)
|
87 |
|
88 |
+
hidden_states, extract_features = self.feature_projection(extract_features)
|
89 |
+
hidden_states = self._mask_hidden_states(
|
90 |
+
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
|
91 |
+
)
|
|
|
|
|
|
|
92 |
|
93 |
+
encoder_outputs = self.encoder(
|
94 |
+
hidden_states,
|
95 |
+
attention_mask=attention_mask,
|
96 |
+
output_attentions=output_attentions,
|
97 |
+
output_hidden_states=output_hidden_states,
|
98 |
+
return_dict=return_dict,
|
99 |
+
)
|
100 |
|
101 |
+
hidden_states = encoder_outputs[0]
|
|
|
|
|
102 |
|
103 |
+
if self.adapter is not None:
|
104 |
+
raise ValueError
|
105 |
+
hidden_states = self.adapter(hidden_states)
|
106 |
|
107 |
+
return hidden_states
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
def _forward_and_cnn7(
|
111 |
+
self,
|
112 |
+
input_values,
|
113 |
+
attention_mask=None):
|
114 |
|
115 |
+
frozen_cnn7 = self.feature_extractor(input_values)
|
116 |
+
frozen_cnn7 = frozen_cnn7.transpose(1, 2)
|
|
|
|
|
|
|
117 |
|
118 |
+
if attention_mask is not None:
|
119 |
+
# compute reduced attention_mask corresponding to feature vectors
|
120 |
+
attention_mask = self._get_feature_vector_attention_mask(
|
121 |
+
frozen_cnn7.shape[1], attention_mask, add_adapter=False
|
122 |
)
|
123 |
|
124 |
+
hidden_states, extract_features = self.feature_projection(frozen_cnn7) # grad=True non frozen
|
125 |
+
hidden_states = self._mask_hidden_states(
|
126 |
+
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
|
127 |
+
)
|
128 |
+
|
129 |
+
encoder_outputs = self.encoder(
|
130 |
+
hidden_states,
|
131 |
+
attention_mask=attention_mask,
|
132 |
+
output_attentions=output_attentions,
|
133 |
+
output_hidden_states=output_hidden_states,
|
134 |
+
return_dict=return_dict,
|
135 |
+
)
|
136 |
|
137 |
+
hidden_states = encoder_outputs[0]
|
138 |
|
139 |
+
if self.adapter is not None:
|
140 |
+
raise ValueError
|
141 |
+
hidden_states = self.adapter(hidden_states)
|
142 |
|
143 |
+
return hidden_states, frozen_cnn7 # feature_proj is trainable thus we have to access the frozen_cnn7 before projection layer
|
144 |
|
145 |
+
# Fusion ============================= End
|
146 |
|
147 |
|
148 |
class ExpressionHead(nn.Module):
|