Spaces:
Runtime error
Runtime error
from datasets import load_dataset | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, TrainingArguments, Trainer, DataCollatorForSeq2Seq | |
# Load dataset | |
data = load_dataset("json", data_files="expanded_dataset_570.json", split='train') | |
data = data.train_test_split(test_size=0.1, seed=42) | |
# Load model/tokenizer | |
model_id = "google/flan-t5-base" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_id) | |
# Format | |
def format(example): | |
prompt = f"### Instruction:\n{example['instruction']}\n\n### Input:\n{example['input']}\n\n### Response:\n" | |
inputs = tokenizer(prompt, padding="max_length", truncation=True, max_length=512) | |
targets = tokenizer(example["output"], padding="max_length", truncation=True, max_length=128) | |
inputs["labels"] = targets["input_ids"] | |
return inputs | |
tokenized_data = data.map(format) | |
# Training config | |
args = TrainingArguments( | |
output_dir="./results", | |
per_device_train_batch_size=2, | |
learning_rate=2e-5, | |
num_train_epochs=5, | |
warmup_steps=50, | |
lr_scheduler_type="linear", | |
logging_steps=10, | |
evaluation_strategy="steps", | |
eval_steps=100, | |
save_total_limit=2, | |
report_to="none" | |
) | |
collator = DataCollatorForSeq2Seq(tokenizer, model=model) | |
trainer = Trainer( | |
model=model, | |
args=args, | |
train_dataset=tokenized_data["train"], | |
eval_dataset=tokenized_data["test"], | |
data_collator=collator, | |
) | |
trainer.train() | |
# Push to Hugging Face Hub | |
model.push_to_hub("your-username/flan-t5-chatbot") | |
tokenizer.push_to_hub("your-username/flan-t5-chatbot") | |