Spaces:
Runtime error
Runtime error
File size: 9,208 Bytes
471554f c2fbc0d 471554f c2fbc0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
from dotenv import load_dotenv
import os
import chromadb
from chromadb.config import Settings
from openai import OpenAI
from sentence_transformers import SentenceTransformer
from pypdf import PdfReader
import requests
from pydantic import BaseModel
import gradio as gr
import json
load_dotenv(override=True)
def handle_tool_call(tool_calls):
results = []
for tool_call in tool_calls:
tool_name = tool_call.function.name
arguments = json.loads(tool_call.function.arguments)
print(f"Tool called: {tool_name}", flush=True)
tool = globals().get(tool_name)
result = tool(**arguments) if tool else {}
results.append({"role": "tool","content": json.dumps(result),"tool_call_id": tool_call.id})
return results
class Evaluation(BaseModel):
is_acceptable: bool
feedback: str
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
def push(text):
requests.post(
"https://api.pushover.net/1/messages.json",
data={
"token": os.getenv("PUSHOVER_TOKEN"),
"user": os.getenv("PUSHOVER_USER"),
"message": text,
}
)
def record_user_details(email, name="Name not provided", notes="not provided"):
push(f"Recording {name} with email {email} and notes {notes}")
return {"recorded": "ok"}
def record_unknown_question(question):
push(f"Recording {question}")
return {"recorded": "ok"}
record_user_details_json = {
"name": "record_user_details",
"description": "Use this tool to record that a user is interested in being in touch and provided an email address",
"parameters": {
"type": "object",
"properties": {
"email": {
"type": "string",
"description": "The email address of this user"
},
"name": {
"type": "string",
"description": "The user's name, if they provided it"
}
,
"notes": {
"type": "string",
"description": "Any additional information about the conversation that's worth recording to give context"
}
},
"required": ["email"],
"additionalProperties": False
}
}
record_unknown_question_json = {
"name": "record_unknown_question",
"description": "Always use this tool to record any question that couldn't be answered as you didn't know the answer",
"parameters": {
"type": "object",
"properties": {
"question": {
"type": "string",
"description": "The question that couldn't be answered"
},
},
"required": ["question"],
"additionalProperties": False
}
}
tools = [{"type": "function", "function": record_user_details_json},
{"type": "function", "function": record_unknown_question_json}]
class Me:
def __init__(self, name, cv_path):
self.name = name
self.chroma_client = chromadb.HttpClient(host=os.environ["CHROMA_DB_CLIEN"], port=8000, settings=Settings(
chroma_client_auth_provider="chromadb.auth.token_authn.TokenAuthClientProvider",
chroma_client_auth_credentials=os.environ["CHROMA_TOKEN"]
))
self.collection = self.chroma_client.get_collection(name="all-my-projects")
self.model = model
self.openai = OpenAI()
self.cv = ""
reader = PdfReader(cv_path)
for page in reader.pages:
text = page.extract_text()
if text:
self.cv += text
self.system_prompt = f"You are acting as {self.name}. You are answering questions on {self.name}'s website, \
particularly questions related to {name}'s career, background, skills and experience. \
Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \
You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions. \
Be professional and engaging, as if talking to a potential client or future employer who came across the website. \
"
self.system_prompt += f"\n\## CV:\n{self.cv}\n\n"
self.system_prompt += f"With this context, please chat with the user, always staying in character as {self.name}."
self.gemini = OpenAI(
api_key=os.getenv("GOOGLE_API_KEY"),
base_url="https://generativelanguage.googleapis.com/v1beta/openai/")
self.evaluator_system_prompt = f"You are an evaluator that decides whether a response to a question is acceptable. \
You are provided with a conversation between a User and an Agent. Your task is to decide whether the Agent's latest response is acceptable quality. \
The Agent is playing the role of {name} and is representing {self.name} on their website. \
The Agent has been instructed to be professional and engaging, as if talking to a potential client or future employer who came across the website. \
The Agent has been provided with context on {self.name} in the form of their summary and LinkedIn details. Here's the information:"
self.evaluator_system_prompt += f"## CV:\n{self.cv}\n\n"
self.evaluator_system_prompt += f"With this context, please evaluate the latest response, replying with whether the response is acceptable and your feedback."
def evaluator_user_prompt(self, reply, message, history):
user_prompt = f"Here's the conversation between the User and the Agent: \n\n{history}\n\n"
user_prompt += f"Here's the latest message from the User: \n\n{message}\n\n"
user_prompt += f"Here's the latest response from the Agent: \n\n{reply}\n\n"
user_prompt += f"Please evaluate the response, replying with whether it is acceptable and your feedback."
return user_prompt
def evaluate(self, reply, message, history) -> Evaluation:
messages = [{"role": "system", "content": self.evaluator_system_prompt}] + [{"role": "user", "content": self.evaluator_user_prompt(reply, message, history)}]
response = self.gemini.beta.chat.completions.parse(model="gemini-2.0-flash", messages=messages, response_format=Evaluation)
return response.choices[0].message.parsed
def embed(self, text):
return self.model.encode(text)
def find_similars(self, question):
results = self.collection.query(query_embeddings=self.embed(question).astype(float).tolist(), n_results=5,include=['documents',"distances"])
documents = results['documents'][0][:]
distances=results['distances'][0][:]
filtered_documents = [
doc for doc, dist in zip(documents, distances) if dist < 1.7
]
return filtered_documents
def rerun(self, reply, message, history, feedback):
updated_system_prompt = self.system_prompt + f"\n\n## Previous answer rejected\nYou just tried to reply, but the quality control rejected your reply\n"
updated_system_prompt += f"## Your attempted answer:\n{reply}\n\n"
updated_system_prompt += f"## Reason for rejection:\n{feedback}\n\n"
messages = [{"role": "system", "content": updated_system_prompt}] + history + [{"role": "user", "content": message}]
response = self.openai.chat.completions.create(model="gpt-4o-mini", messages=messages)
return response.choices[0].message.content
def make_context(self,similars):
if len(similars)==0:
return ""
message = f"To provide some context, here are some projects done by {self.name} that might be related to the question that you need to answer.\n\n"
for similar in similars:
message += f"Potentially related projects:\n{similar}\n\n"
return message
def chat(self,message,history):
similars=self.find_similars(message)
message+=self.make_context(similars)
messages = [{"role": "system", "content": self.system_prompt}]+history + [{"role": "user", "content": message}]
done = False
while not done:
response = self.openai.chat.completions.create(model="gpt-4o-mini", messages=messages, tools=tools)
if response.choices[0].finish_reason=="tool_calls":
message = response.choices[0].message
tool_calls = message.tool_calls
results = handle_tool_call(tool_calls)
messages.append(message)
messages.extend(results)
else:
done = True
reply=response.choices[0].message.content
evaluation = self.evaluate(reply, message, history)
if evaluation.is_acceptable:
return reply
else:
return self.rerun(reply, message, history, evaluation.feedback)
if __name__ == "__main__":
me = Me(name="Djallel BRAHMIA", cv_path="documents/CV/CV.pdf")
gr.ChatInterface(me.chat, type="messages").launch()
|