File size: 9,208 Bytes
471554f
c2fbc0d
 
 
 
 
 
 
 
 
 
471554f
 
 
c2fbc0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
from dotenv import load_dotenv
import os
import chromadb
from chromadb.config import Settings
from openai import OpenAI
from sentence_transformers import SentenceTransformer
from pypdf import PdfReader
import requests
from pydantic import BaseModel
import gradio as gr
import json

load_dotenv(override=True)

def handle_tool_call(tool_calls):
        results = []
        for tool_call in tool_calls:
            tool_name = tool_call.function.name
            arguments = json.loads(tool_call.function.arguments)
            print(f"Tool called: {tool_name}", flush=True)
            tool = globals().get(tool_name)
            result = tool(**arguments) if tool else {}
            results.append({"role": "tool","content": json.dumps(result),"tool_call_id": tool_call.id})
        return results
class Evaluation(BaseModel):
    is_acceptable: bool
    feedback: str
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')

def push(text):
    requests.post(
        "https://api.pushover.net/1/messages.json",
        data={
            "token": os.getenv("PUSHOVER_TOKEN"),
            "user": os.getenv("PUSHOVER_USER"),
            "message": text,
        }
    )


def record_user_details(email, name="Name not provided", notes="not provided"):
    push(f"Recording {name} with email {email} and notes {notes}")
    return {"recorded": "ok"}

def record_unknown_question(question):
    push(f"Recording {question}")
    return {"recorded": "ok"}

record_user_details_json = {
    "name": "record_user_details",
    "description": "Use this tool to record that a user is interested in being in touch and provided an email address",
    "parameters": {
        "type": "object",
        "properties": {
            "email": {
                "type": "string",
                "description": "The email address of this user"
            },
            "name": {
                "type": "string",
                "description": "The user's name, if they provided it"
            }
            ,
            "notes": {
                "type": "string",
                "description": "Any additional information about the conversation that's worth recording to give context"
            }
        },
        "required": ["email"],
        "additionalProperties": False
    }
}

record_unknown_question_json = {
    "name": "record_unknown_question",
    "description": "Always use this tool to record any question that couldn't be answered as you didn't know the answer",
    "parameters": {
        "type": "object",
        "properties": {
            "question": {
                "type": "string",
                "description": "The question that couldn't be answered"
            },
        },
        "required": ["question"],
        "additionalProperties": False
    }
}

tools = [{"type": "function", "function": record_user_details_json},
        {"type": "function", "function": record_unknown_question_json}]

class Me:
    def __init__(self, name, cv_path):
        self.name = name
        self.chroma_client = chromadb.HttpClient(host=os.environ["CHROMA_DB_CLIEN"], port=8000,    settings=Settings(
        chroma_client_auth_provider="chromadb.auth.token_authn.TokenAuthClientProvider",
        chroma_client_auth_credentials=os.environ["CHROMA_TOKEN"]
    ))
        self.collection = self.chroma_client.get_collection(name="all-my-projects")
        self.model = model
        self.openai = OpenAI()
        self.cv = ""
        reader = PdfReader(cv_path)
        for page in reader.pages:
            text = page.extract_text()
            if text:
                self.cv += text
        self.system_prompt = f"You are acting as {self.name}. You are answering questions on {self.name}'s website, \

        particularly questions related to {name}'s career, background, skills and experience. \

        Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \

        You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions. \

        Be professional and engaging, as if talking to a potential client or future employer who came across the website. \

        "
        self.system_prompt += f"\n\## CV:\n{self.cv}\n\n"

        self.system_prompt += f"With this context, please chat with the user, always staying in character as {self.name}."

        self.gemini = OpenAI(
        api_key=os.getenv("GOOGLE_API_KEY"), 
        base_url="https://generativelanguage.googleapis.com/v1beta/openai/")
        self.evaluator_system_prompt = f"You are an evaluator that decides whether a response to a question is acceptable. \

        You are provided with a conversation between a User and an Agent. Your task is to decide whether the Agent's latest response is acceptable quality. \

        The Agent is playing the role of {name} and is representing {self.name} on their website. \

        The Agent has been instructed to be professional and engaging, as if talking to a potential client or future employer who came across the website. \

        The Agent has been provided with context on {self.name} in the form of their summary and LinkedIn details. Here's the information:"

        self.evaluator_system_prompt += f"## CV:\n{self.cv}\n\n"
        self.evaluator_system_prompt += f"With this context, please evaluate the latest response, replying with whether the response is acceptable and your feedback."



    def evaluator_user_prompt(self, reply, message, history):
        user_prompt = f"Here's the conversation between the User and the Agent: \n\n{history}\n\n"
        user_prompt += f"Here's the latest message from the User: \n\n{message}\n\n"
        user_prompt += f"Here's the latest response from the Agent: \n\n{reply}\n\n"
        user_prompt += f"Please evaluate the response, replying with whether it is acceptable and your feedback."
        return user_prompt
    def evaluate(self, reply, message, history) -> Evaluation:

        messages = [{"role": "system", "content": self.evaluator_system_prompt}] + [{"role": "user", "content": self.evaluator_user_prompt(reply, message, history)}]
        response = self.gemini.beta.chat.completions.parse(model="gemini-2.0-flash", messages=messages, response_format=Evaluation)
        return response.choices[0].message.parsed
    def embed(self, text):
        return self.model.encode(text)

    def find_similars(self, question):
        results = self.collection.query(query_embeddings=self.embed(question).astype(float).tolist(), n_results=5,include=['documents',"distances"])
        documents = results['documents'][0][:]
        distances=results['distances'][0][:]
        filtered_documents = [
        doc for doc, dist in zip(documents, distances) if dist < 1.7
    ]
        return filtered_documents
    def rerun(self, reply, message, history, feedback):
        updated_system_prompt = self.system_prompt + f"\n\n## Previous answer rejected\nYou just tried to reply, but the quality control rejected your reply\n"
        updated_system_prompt += f"## Your attempted answer:\n{reply}\n\n"
        updated_system_prompt += f"## Reason for rejection:\n{feedback}\n\n"
        messages = [{"role": "system", "content": updated_system_prompt}] + history + [{"role": "user", "content": message}]
        response = self.openai.chat.completions.create(model="gpt-4o-mini", messages=messages)
        return response.choices[0].message.content
    def make_context(self,similars):
        if len(similars)==0:
            return ""
        message = f"To provide some context, here are some projects done by {self.name} that might be related to the question that you need to answer.\n\n"
        for similar in similars:
            message += f"Potentially related projects:\n{similar}\n\n"
        return message
    def chat(self,message,history):
        similars=self.find_similars(message)

        message+=self.make_context(similars)
        messages = [{"role": "system", "content": self.system_prompt}]+history  + [{"role": "user", "content": message}]
        
        done = False
        while not done:
            response = self.openai.chat.completions.create(model="gpt-4o-mini", messages=messages, tools=tools)
            if response.choices[0].finish_reason=="tool_calls":
                message = response.choices[0].message
                tool_calls = message.tool_calls
                results = handle_tool_call(tool_calls)
                messages.append(message)
                messages.extend(results)
            else:
                done = True
        reply=response.choices[0].message.content
        evaluation = self.evaluate(reply, message, history)

        if evaluation.is_acceptable:
            return reply

        else:
            return self.rerun(reply, message, history, evaluation.feedback)    
if __name__ == "__main__":
    me = Me(name="Djallel BRAHMIA", cv_path="documents/CV/CV.pdf")
    gr.ChatInterface(me.chat, type="messages").launch()