File size: 3,666 Bytes
a06b3f8
 
 
9ac9d5e
 
 
a06b3f8
 
 
 
64c3879
a06b3f8
 
 
 
 
 
 
 
9ac9d5e
a06b3f8
9ac9d5e
 
 
 
a06b3f8
 
9ac9d5e
a06b3f8
 
9ac9d5e
 
a06b3f8
9ac9d5e
a06b3f8
 
9ac9d5e
a06b3f8
 
64c3879
 
 
 
 
a9182c5
 
 
 
 
 
 
 
 
 
64c3879
 
 
9ac9d5e
64c3879
 
a9182c5
64c3879
9ac9d5e
a06b3f8
 
9ac9d5e
a06b3f8
 
 
64c3879
 
 
a9182c5
64c3879
a06b3f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ac9d5e
 
a06b3f8
 
 
a9182c5
a06b3f8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from smolagents import OpenAIServerModel, CodeAgent, InferenceClientModel, DuckDuckGoSearchTool, VisitWebpageTool
import markdownify

import tools
import prompts

MANAGER_MODEL = "deepseek-ai/DeepSeek-R1"
AGENT_MODEL = "Qwen/Qwen2.5-Coder-32B-Instruct"
FINAL_ANSWER_MODEL = "deepseek-ai/DeepSeek-R1" # OpenAIServerModel
WEB_SEARCH_MODEL        = "Qwen/Qwen2.5-Coder-32B-Instruct"
IMAGE_ANALYSIS_MODEL    = "HuggingFaceM4/idefics2-8b"
AUDIO_ANALYSIS_MODEL    = "Qwen/Qwen2.5-Coder-32B-Instruct"
VIDEO_ANALYSIS_MODEL    = "Qwen/Qwen2.5-Coder-32B-Instruct"
YOUTUBE_ANALYSIS_MODEL  = "Qwen/Qwen2.5-Coder-32B-Instruct"
DOCUMENT_ANALYSIS_MODEL = "Qwen/Qwen2.5-Coder-32B-Instruct"
ARITHMETIC_MODEL        = "Qwen/Qwen2.5-Coder-32B-Instruct"
CODE_GENERATION_MODEL   = "Qwen/Qwen2.5-Coder-32B-Instruct"
CODE_EXECUTION_MODEL    = "Qwen/Qwen2.5-Coder-32B-Instruct"

# Agents

def create_custom_web_search_agent(message):
    return CodeAgent(
        name="custom_web_search_agent",
        description=prompts.get_web_search_prompt(message),
        model=InferenceClientModel(WEB_SEARCH_MODEL),
        max_steps=2,
        tools=[tools.simple_web_search_tool, tools.visit_web_page_tool],
    )

def create_simple_web_search_agent(message):
    return CodeAgent(
        name="simple_web_search_agent",
        description=prompts.get_web_search_prompt(message),
        model=InferenceClientModel(WEB_SEARCH_MODEL),
        max_steps=2,
        tools=[tools.simple_web_search_tool, tools.visit_web_page_tool],
    )

def create_image_analysis_agent(message):
    return CodeAgent(
        name="image_analysis_agent",
        description=prompts.get_image_analysis_prompt(message),
        model=InferenceClientModel(IMAGE_ANALYSIS_MODEL),
        tools=[tools.image_analysis_tool],
        max_steps=2,
    )

def create_audio_analysis_agent(message):
    return CodeAgent(
        name="audio_analysis_agent",
        description=prompts.get_audio_analysis_prompt(message),
        model=InferenceClientModel(AUDIO_ANALYSIS_MODEL),
        tools=[tools.audio_analysis_tool],
        max_steps=2,
    )

def create_manager_agent(message):
    simple_web_search_agent = create_simple_web_search_agent(message)
    image_analysis_agent = create_image_analysis_agent(message)
    audio_analysis_agent = create_audio_analysis_agent(message)

    return CodeAgent(
        name="manager_agent",
        model=InferenceClientModel(MANAGER_MODEL, provider="together", max_tokens=8096),
        description=prompts.get_manager_prompt(message),
        tools=[],
        planning_interval=4,
        verbosity_level=2,
        managed_agents=[
            simple_web_search_agent,
            image_analysis_agent,
            audio_analysis_agent,
        ],
        max_steps=10,
        additional_authorized_imports=[
            "requests",
            "zipfile",
            "os",
            "pandas",
            "numpy",
            "sympy",
            "json",
            "bs4",
            "pubchempy",
            "xml",
            "yahoo_finance",
            "Bio",
            "sklearn",
            "scipy",
            "pydub",
            "io",
            "PIL",
            "chess",
            "PyPDF2",
            "pptx",
            "torch",
            "datetime",
            "csv",
            "fractions",
        ],
    )

def create_final_answer_agent(message):
    return CodeAgent(
        name="final_answer_agent",
        description="Given a question and an initial answer, return the final refined answer following strict formatting rules.",
        model=InferenceClientModel(FINAL_ANSWER_MODEL),
        max_steps=3,
        tools=[],
    )