Spaces:
Sleeping
Sleeping
File size: 6,379 Bytes
a06b3f8 5f2bd4a a06b3f8 9ac9d5e 5037c4d a06b3f8 9ac9d5e a06b3f8 9ac9d5e a06b3f8 5037c4d 9ac9d5e a06b3f8 9ac9d5e a06b3f8 9ac9d5e a06b3f8 5037c4d 9ac9d5e a06b3f8 64c3879 a9182c5 5037c4d a9182c5 5037c4d 64c3879 9ac9d5e 64c3879 a9182c5 5037c4d 64c3879 9ac9d5e a06b3f8 9ac9d5e a06b3f8 64c3879 a9182c5 5037c4d 64c3879 a06b3f8 9ac9d5e a06b3f8 5037c4d a06b3f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
from smolagents import OpenAIServerModel, CodeAgent, InferenceClientModel, DuckDuckGoSearchTool, VisitWebpageTool
import markdownify
import os
import tools
import prompts
MANAGER_MODEL_GPT = "gpt-4.5-preview"
FINAL_ANSWER_MODEL_GEMINI = "gemini-2.5-pro-preview-03-25"
AGENT_MODEL_GTP = "gpt-4.1-mini"
MANAGER_MODEL = "deepseek-ai/DeepSeek-R1"
# FINAL_ANSWER_MODEL = "gpt-4o" # OpenAIServerModel
FINAL_ANSWER_MODEL = "deepseek-ai/DeepSeek-R1" # OpenAIServerModel
AGENT_MODEL = "Qwen/Qwen2.5-Coder-32B-Instruct"
WEB_SEARCH_MODEL = "Qwen/Qwen2.5-Coder-32B-Instruct"
IMAGE_ANALYSIS_MODEL = "HuggingFaceM4/idefics2-8b"
AUDIO_ANALYSIS_MODEL = "Qwen/Qwen2-Audio-7B-Instruct"
VIDEO_ANALYSIS_MODEL = "llava-hf/LLaVA-NeXT-Video-7B-hf"
YOUTUBE_ANALYSIS_MODEL = "llava-hf/LLaVA-NeXT-Video-7B-hf"
DOCUMENT_ANALYSIS_MODEL = "Qwen/Qwen2.5-Coder-32B-Instruct"
ARITHMETIC_MODEL = "Qwen/Qwen2.5-Coder-32B-Instruct"
CODE_GENERATION_MODEL = "Qwen/Qwen2.5-Coder-32B-Instruct"
CODE_EXECUTION_MODEL = "Qwen/Qwen2.5-Coder-32B-Instruct"
# Agents
def create_custom_web_search_agent(message):
return CodeAgent(
name="custom_web_search_agent",
description=prompts.get_web_search_prompt(message),
model=InferenceClientModel(WEB_SEARCH_MODEL),
max_steps=3,
tools=[tools.simple_web_search_tool, tools.visit_web_page_tool],
)
def create_simple_web_search_agent(message):
return CodeAgent(
name="simple_web_search_agent",
description=prompts.get_web_search_prompt(message),
model=InferenceClientModel(WEB_SEARCH_MODEL),
max_steps=3,
tools=[tools.simple_web_search_tool, tools.visit_web_page_tool],
)
def create_image_analysis_agent(message):
return CodeAgent(
name="image_analysis_agent",
description=prompts.get_image_analysis_prompt(message),
model=InferenceClientModel(IMAGE_ANALYSIS_MODEL),
tools=[tools.image_analysis_tool],
max_steps=3,
)
def create_audio_analysis_agent(message):
return CodeAgent(
name="audio_analysis_agent",
description=prompts.get_audio_analysis_prompt(message),
model=InferenceClientModel(AUDIO_ANALYSIS_MODEL),
tools=[tools.audio_analysis_tool],
max_steps=3,
)
def create_video_analysis_agent(message):
return CodeAgent(
name="video_analysis_agent",
description=prompts.get_video_analysis_prompt(message),
model=InferenceClientModel(VIDEO_ANALYSIS_MODEL),
tools=[tools.video_analysis_tool],
max_steps=3,
)
def create_youtube_analysis_agent(message):
return CodeAgent(
name="youtube_analysis_agent",
description=prompts.get_youtube_analysis_prompt(message),
model=InferenceClientModel(YOUTUBE_ANALYSIS_MODEL),
tools=[tools.youtube_analysis_tool],
max_steps=3,
)
def create_document_analysis_agent(message):
return CodeAgent(
name="document_analysis_agent",
description=prompts.get_document_analysis_prompt(message),
model=InferenceClientModel(DOCUMENT_ANALYSIS_MODEL),
tools=[tools.document_analysis_tool],
max_steps=3,
)
def create_arithmetic_agent(message):
return CodeAgent(
name="arithmetic_agent",
description=prompts.get_arithmetic_prompt(message),
model=InferenceClientModel(ARITHMETIC_MODEL),
tools=[
tools.add,
tools.subtract,
tools.multiply,
tools.divide,
tools.modulus,
],
max_steps=3,
)
def create_code_generation_agent(message):
return CodeAgent(
name="code_generation_agent",
description=prompts.get_code_generation_prompt(message),
model=InferenceClientModel(CODE_GENERATION_MODEL),
tools=[tools.code_generation_tool],
max_steps=3,
)
def create_code_execution_agent(message):
return CodeAgent(
name="code_execution_agent",
description=prompts.get_code_execution_prompt(message),
model=InferenceClientModel(CODE_EXECUTION_MODEL),
tools=[tools.code_execution_tool],
max_steps=3,
)
def create_manager_agent(message):
simple_web_search_agent = create_simple_web_search_agent(message)
image_analysis_agent = create_image_analysis_agent(message)
audio_analysis_agent = create_audio_analysis_agent(message)
video_analysis_agent = create_video_analysis_agent(message)
youtube_analysis_agent = create_youtube_analysis_agent(message)
document_analysis_agent = create_document_analysis_agent(message)
arithmetic_agent = create_arithmetic_agent(message)
code_generation_agent = create_code_generation_agent(message)
code_execution_agent = create_code_execution_agent(message)
return CodeAgent(
name="manager_agent",
model=InferenceClientModel(MANAGER_MODEL, provider="together", max_tokens=8096),
description=prompts.get_manager_prompt(message),
tools=[],
planning_interval=4,
verbosity_level=2,
managed_agents=[
simple_web_search_agent,
image_analysis_agent,
audio_analysis_agent,
video_analysis_agent,
youtube_analysis_agent,
document_analysis_agent,
arithmetic_agent,
code_generation_agent,
code_execution_agent,
],
max_steps=10,
additional_authorized_imports=[
"requests",
"zipfile",
"os",
"pandas",
"numpy",
"sympy",
"json",
"bs4",
"pubchempy",
"xml",
"yahoo_finance",
"Bio",
"sklearn",
"scipy",
"pydub",
"io",
"PIL",
"chess",
"PyPDF2",
"pptx",
"torch",
"datetime",
"csv",
"fractions",
],
)
def create_final_answer_agent(message):
return CodeAgent(
name="final_answer_agent",
description="Given a question and an initial answer, return the final refined answer following strict formatting rules.",
# model=OpenAIServerModel(FINAL_ANSWER_MODEL),
model=InferenceClientModel(FINAL_ANSWER_MODEL),
tools=[],
)
|