Spaces:
Sleeping
Sleeping
File size: 12,138 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f a06b3f8 9ac9d5e 5037c4d 10e9b7d d59f015 e80aab9 3db6293 a06b3f8 e80aab9 31243f4 d59f015 31243f4 4021bf3 b90251f 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 b177367 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 7d65c66 3c4371f 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f 31243f4 7d65c66 31243f4 7d65c66 31243f4 3c4371f 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 5f2bd4a 5037c4d 5f2bd4a a06b3f8 5f2bd4a 5037c4d 5f2bd4a 5037c4d a06b3f8 e80aab9 31243f4 0ee0419 e514fd7 a9182c5 5037c4d e514fd7 e80aab9 5f2bd4a 5037c4d 5f2bd4a 5037c4d 5f2bd4a 5037c4d 5f2bd4a 5037c4d 5f2bd4a 5037c4d 5f2bd4a 5037c4d 5f2bd4a 5037c4d 5f2bd4a 5037c4d 5f2bd4a 5037c4d 5f2bd4a 7e4a06b 5f2bd4a 5037c4d 5f2bd4a 5037c4d 5f2bd4a e80aab9 a06b3f8 e80aab9 a06b3f8 e80aab9 a06b3f8 e80aab9 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from huggingface_hub import login
from dotenv import load_dotenv
from multi_agent import orchestrate
from config import config
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
QUESTION_FILE_PATH = "data/gaia_validation.jsonl"
QUESTION_LEVEL = 1
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
fixed_answer = "This is a default answer."
print(f"Agent returning fixed answer: {fixed_answer}")
return fixed_answer
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
def test_init_agent_for_chat(question,
openai_api_key,
gemini_api_key,
anthropic_api_key,
space_id,
hf_token,
serper_api_key,
file_name
):
if file_name:
file_name = f"data/{file_name}"
if not question:
raise gr.Error("Question is required.")
if not openai_api_key:
raise gr.Error("OpenAi Key is required.")
if not space_id:
raise gr.Error("Space Id is required.")
if not hf_token:
raise gr.Error("HF Token is required.")
try:
os.environ["OPENAI_API_KEY"] = openai_api_key
os.environ["GEMINI_API_KEY"] = gemini_api_key
os.environ["ANTHROPIC_API_KEY"] = anthropic_api_key
os.environ["SPACE_ID"] = space_id
os.environ["HF_TOKEN"] = hf_token
os.environ["SERPER_API_KEY"] = serper_api_key
config.OPENAI_API_KEY = openai_api_key
config.GEMINI_API_KEY = gemini_api_key
config.ANTHROPIC_API_KEY = anthropic_api_key
config.SPACE_ID = space_id
config.HF_TOKEN = hf_token
config.SERPER_API_KEY = serper_api_key
submitted_answer = orchestrate(question, file_name)
except Exception as e:
raise gr.Error(e)
# finally:
# del os.environ["OPENAI_API_KEY"]
# del os.environ["GEMINI_API_KEY"]
# del os.environ["ANTHROPIC_API_KEY"]
# del os.environ["SPACE_ID"]
# del os.environ["HF_TOKEN"]
# del os.environ["SERPER_API_KEY"]
return submitted_answer
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Who is in the final of champions league in 2025?
2. Who is in the final of champions league form 2020 to 2025?
3. What is the colour of the suit in this image: https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Fimages.hdqwalls.com%2Fwallpapers%2Fblack-superman-henry-cavill-xa.jpg&f=1&nofb=1&ipt=451cdc8bb05635ac59e50dc567cb68ae38ad45a626622ee7760b2c3ef828d5a7?
4. Which of the fruits shown in the 2008 painting “Embroidery from Uzbekistan” were served as part of the October 1949 breakfast menu for the ocean liner that was later used as a floating prop for the film “The Last Voyage”? Give the items as a comma-separated list, ordering them in clockwise order based on their arrangement in the painting starting from the 12 o’clock position. Use the plural form of each fruit.
"""
)
with gr.Row():
space_id = gr.Textbox(
label="space Id *",
type="password",
placeholder="Dkapsis/assignment-gaia-agent",
interactive=True
)
hf_token = gr.Textbox(
label="HF Token *",
type="password",
placeholder="hf_password",
interactive=True
)
openai_api_key = gr.Textbox(
label="OpenAI API Key *",
type="password",
placeholder="sk‑...",
interactive=True
)
with gr.Row():
serper_api_key = gr.Textbox(
label="Serper API Key",
type="password",
placeholder="password",
interactive=True
)
gemini_api_key = gr.Textbox(
label="Gemini API Key",
type="password",
interactive=True
)
anthropic_api_key = gr.Textbox(
label="Anthropic API Key",
type="password",
placeholder="password",
interactive=True
)
with gr.Row():
question = gr.Textbox(
label="Question *",
placeholder="In the 2025 Gradio Agents & MCP Hackathon, what percentage of participants submitted a solution during the last 24 hours?",
interactive=True
)
with gr.Row():
file_name = gr.Textbox(
label="File Name",
interactive=True,
scale=2
)
with gr.Row():
answer = gr.Textbox(
label="Answer",
lines=1,
interactive=False
)
with gr.Row():
submit_btn = gr.Button("Submit", variant="primary")
gr.LoginButton()
submit_btn.click(
fn=test_init_agent_for_chat,
inputs=[question, openai_api_key, gemini_api_key, anthropic_api_key, space_id, hf_token, serper_api_key, file_name],
outputs=answer
)
# gr.ChatInterface(test_init_agent_for_chat(
# question = question,
# openai_api_key = openai_api_key,
# gemini_api_key = gemini_api_key,
# anthropic_api_key = anthropic_api_key,
# space_id = space_id,
# hf_token = hf_token,
# serper_api_key = serper_api_key
# ), type="messages")
# run_button = gr.Button("Run Evaluation & Submit All Answers")
# status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# # Removed max_rows=10 from DataFrame constructor
# results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
# run_button.click(
# fn=run_and_submit_all,
# outputs=[status_output, results_table]
# )
if __name__ == "__main__":
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |