Spaces:
Sleeping
Sleeping
File size: 10,721 Bytes
9ac9d5e 64c3879 5037c4d 9ac9d5e 5037c4d 9ac9d5e 5037c4d 9ac9d5e 64c3879 a9182c5 5037c4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import os
import base64
from smolagents import DuckDuckGoSearchTool, VisitWebpageTool, GoogleSearchTool
from smolagents.tools import tool
from config import config
# Tools
if not os.environ.get("SERPER_API_KEY"):
print("---------------DEN VRIKA KEY-----------")
print("---------------DEN VRIKA KEY-----------")
simple_web_search_tool = DuckDuckGoSearchTool()
else:
print("!!!!!!!!!!!!! VRIKA KEY !!!!!!!!!!!!!!!!")
print("!!!!!!!!!!!!! VRIKA KEY !!!!!!!!!!!!!!!!")
simple_web_search_tool = GoogleSearchTool("serper")
visit_web_page_tool = VisitWebpageTool()
@tool
def web_search_tool(query: str) -> str:
"""
Given a question, search the web and return a summary answer.
Args:
query (str): The search query to look up.
Returns:
str: A relevant summary or result from DuckDuckGo.
"""
try:
url = "https://api.duckduckgo.com/"
params = {"q": query, "format": "json", "no_html": 1}
response = requests.get(url, params=params)
data = response.json()
if abstract := data.get("AbstractText"):
return abstract
elif related := data.get("RelatedTopics"):
return related[0]["Text"] if related else "No result found."
else:
return "No relevant information found via DuckDuckGo."
except Exception as e:
raise RuntimeError(f"DuckDuckGo search failed: {str(e)}")
@tool
def image_analysis_tool(question: str, file_path: str) -> str:
"""
Given a question and an image file path, analyze the image to answer the question.
Args:
question (str): A question about the image.
file_path (str): Path to the image file.
Returns:
str: Answer to the question.
Raises:
RuntimeError: If processing fails.
"""
try:
# Read and encode image to base64
with open(file_path, "rb") as img_file:
img_data = base64.b64encode(img_file.read()).decode("utf-8")
# Format the content in a typical vision+text prompt format
prompt = {
"inputs": {
"image": img_data,
"question": question
}
}
# You can return this dictionary directly if your model expects JSON format
return prompt # Actual agent model will process this
except Exception as e:
raise RuntimeError(f"Image analysis failed: {str(e)}")
@tool
def audio_analysis_tool(question: str, file_path: str) -> str:
"""
Given a question and an audio file path, analyze the audio to answer the question.
Args:
question (str): A question about the audio.
file_path (str): Path to the audio file.
Returns:
str: Structured prompt with audio and question (for agent model to process).
Raises:
RuntimeError: If processing fails.
"""
try:
# Read and encode audio to base64
with open(file_path, "rb") as audio_file:
audio_data = base64.b64encode(audio_file.read()).decode("utf-8")
# Format the content in a vision+text style prompt, adapted for audio
prompt = {
"inputs": {
"audio": audio_data,
"question": question
}
}
return prompt # The agent model will process this
except Exception as e:
raise RuntimeError(f"Audio analysis failed: {str(e)}")
@tool
def video_analysis_tool(question: str, file_path: str) -> str:
"""
Given a question and a video file path, analyze the video to answer the question.
Args:
question (str): A question about the video.
file_path (str): Path to the video file.
Returns:
str: Structured prompt with video and question (for agent model to process).
Raises:
RuntimeError: If processing fails.
"""
try:
# Read and encode video to base64
with open(file_path, "rb") as video_file:
video_data = base64.b64encode(video_file.read()).decode("utf-8")
# Format the content in a vision+text style prompt, adapted for video
prompt = {
"inputs": {
"video": video_data,
"question": question
}
}
return prompt # The agent model will process this
except Exception as e:
raise RuntimeError(f"Video analysis failed: {str(e)}")
@tool
def youtube_analysis_tool(question: str, url: str) -> str:
"""
Given a question and a YouTube video URL, analyze the video to answer the question.
Args:
question (str): A question about the YouTube video.
url (str): The YouTube URL.
Returns:
str: Structured prompt with URL and question (for agent model to process).
Raises:
RuntimeError: If processing fails.
"""
try:
# Prepare structured input to be processed by the agent model
prompt = {
"inputs": {
"youtube_url": url,
"question": question
}
}
return prompt # The agent model will handle downloading and processing
except Exception as e:
raise RuntimeError(f"YouTube analysis failed: {str(e)}")
@tool
def document_analysis_tool(question: str, file_path: str) -> str:
"""
Given a question and a document file path, analyze the document to answer the question.
Args:
question (str): A question about the document.
file_path (str): Path to the document file.
Returns:
str: Structured prompt with document content and question (for agent model to process).
Raises:
RuntimeError: If processing fails.
"""
try:
if is_ext(file_path, ".docx"):
# Extract text from .docx files
text_data = read_docx_text(file_path)
prompt = {
"inputs": {
"document_type": "docx",
"document_content": text_data,
"question": question
}
}
elif is_ext(file_path, ".pptx"):
# Extract text from .pptx files
text_data = read_pptx_text(file_path)
prompt = {
"inputs": {
"document_type": "pptx",
"document_content": text_data,
"question": question
}
}
else:
# For PDFs or other binary files, encode to base64
with open(file_path, "rb") as file:
encoded_data = base64.b64encode(file.read()).decode("utf-8")
prompt = {
"inputs": {
"document_type": "binary",
"document_base64": encoded_data,
"question": question
}
}
return prompt # Agent model will handle document type accordingly
except Exception as e:
raise RuntimeError(f"Document analysis failed: {str(e)}")
@tool
def arithmetic_tool(question: str, a: float, b: float) -> dict:
"""
Given a question and two numbers, perform the calculation to answer the question.
Args:
question (str): A natural language arithmetic question.
a (float): First number.
b (float): Second number.
Returns:
dict: Structured input for the model or agent to interpret and compute.
Raises:
RuntimeError: If input or processing fails.
"""
try:
prompt = {
"inputs": {
"question": question,
"a": a,
"b": b
}
}
return prompt # Let the model/agent evaluate and compute the result
except Exception as e:
raise RuntimeError(f"Arithmetic processing failed: {str(e)}")
@tool
def code_generation_tool(question: str, json_data: str) -> dict:
"""
Given a question and JSON data, generate and execute code to answer the question.
Args:
question (str): The question to be answered.
json_data (str): Input JSON data as a string.
Returns:
dict: Structured input for the agent or model to process and respond.
Raises:
RuntimeError: If formatting or processing fails.
"""
try:
prompt = {
"inputs": {
"question": question,
"json_data": json_data
}
}
return prompt # Model or code-executing agent will handle the execution logic
except Exception as e:
raise RuntimeError(f"Code generation processing failed: {str(e)}")
@tool
def code_execution_tool(question: str, file_path: str) -> dict:
"""
Given a question and a Python file, prepare code execution context to answer the question.
Args:
question (str): The question to be answered.
file_path (str): Path to the Python file.
Returns:
dict: Structured input with base64-encoded file and question.
Raises:
RuntimeError: If encoding or file handling fails.
"""
try:
# Read and encode the Python file
with open(file_path, "rb") as py_file:
code_data = base64.b64encode(py_file.read()).decode("utf-8")
# Construct prompt structure
prompt = {
"inputs": {
"question": question,
"python_file": code_data,
"file_name": os.path.basename(file_path)
}
}
return prompt # Model/agent will handle execution and answer
except Exception as e:
raise RuntimeError(f"Code execution processing failed: {str(e)}")
@tool
def add(a: float, b: float) -> float:
"""Add two numbers.
Args:
a: First number
b: Second number
Returns:
Result number
"""
return a + b
@tool
def subtract(a: float, b: float) -> float:
"""Subtract two numbers.
Args:
a: First number
b: Second number
Returns:
Result number
"""
return a - b
@tool
def multiply(a: float, b: float) -> float:
"""Multiply two numbers.
Args:
a: First number
b: Second number
Returns:
Result number
"""
return a * b
@tool
def divide(a: float, b: float) -> float:
"""Divide two numbers.
Args:
a: First number
b: Second number
Returns:
Result number
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: float, b: float) -> float:
"""Get the modulus of two numbers.
Args:
a: First number
b: Second number
Returns:
Result number
"""
return a % b
|