File size: 5,312 Bytes
6c5a763 3ffebe8 599d710 3ffebe8 6c5a763 ab731e4 6c5a763 3ffebe8 6c5a763 3ffebe8 154fef1 cab60db 6c5a763 3ffebe8 f1e60b9 3ffebe8 f1e60b9 3ffebe8 396e0c2 f1e60b9 3ffebe8 f1e60b9 3ffebe8 716b99a 3ffebe8 716b99a cab60db 6c5a763 154fef1 6c5a763 154fef1 ab731e4 6c5a763 70faa9c ce76895 599d710 70faa9c 154fef1 6c5a763 70faa9c 154fef1 70faa9c 154fef1 6c5a763 154fef1 6c5a763 154fef1 599d710 154fef1 6c5a763 154fef1 599d710 396e0c2 6c5a763 455c7bd 599d710 30998ff 70faa9c 599d710 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import random
from scipy.stats import entropy as scipy_entropy
import time
# --- ПАРАМЕТРЫ ---
seqlen = 60
min_run, max_run = 1, 2
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
bases = ['A', 'C', 'G', 'T']
population_size = 10 # размер популяции "организмов"
survival_rate = 0.5 # процент выживших для следующего поколения
# --- ФУНКЦИИ ---
def bio_mutate(seq):
r = random.random()
if r < 0.70:
idx = random.randint(0, len(seq)-1)
orig = seq[idx]
prob = random.random()
if orig in 'AG':
newbase = 'C' if prob < 0.65 else random.choice(['T', 'C'])
elif orig in 'CT':
newbase = 'G' if prob < 0.65 else random.choice(['A', 'G'])
else:
newbase = random.choice([b for b in bases if b != orig])
seq = seq[:idx] + newbase + seq[idx+1:]
elif r < 0.80:
idx = random.randint(0, len(seq)-1)
ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
seq = seq[:idx] + ins + seq[idx:]
if len(seq) > seqlen:
seq = seq[:seqlen]
elif r < 0.90:
if len(seq) > 4:
idx = random.randint(0, len(seq)-2)
dell = random.randint(1, min(3, len(seq)-idx))
seq = seq[:idx] + seq[idx+dell:]
else:
if len(seq) > 10:
start = random.randint(0, len(seq)-6)
end = start + random.randint(3,6)
subseq = seq[start:end][::-1]
seq = seq[:start] + subseq + seq[end:]
while len(seq) < seqlen:
seq += random.choice(bases)
return seq[:seqlen]
def compute_autocorr(profile):
profile = profile - np.mean(profile)
result = np.correlate(profile, profile, mode='full')
result = result[result.size // 2:]
norm = np.max(result) if np.max(result) != 0 else 1
return result[:10]/norm
def compute_entropy(profile):
vals, counts = np.unique(profile, return_counts=True)
p = counts / counts.sum()
return scipy_entropy(p, base=2)
def genetic_algorithm(population):
"""Эволюционный алгоритм для отбора и мутации."""
# Отбор лучших организмов
population.sort(key=lambda x: x[1]) # сортируем по фитнесу (энтропия)
survivors = population[:int(population_size * survival_rate)]
# Кроссовер: создаем новых организмов на основе выживших
offspring = []
for i in range(len(survivors) // 2):
parent1, parent2 = survivors[i], survivors[-i-1]
crossover_point = random.randint(0, seqlen)
child1 = parent1[0][:crossover_point] + parent2[0][crossover_point:]
child2 = parent2[0][:crossover_point] + parent1[0][crossover_point:]
offspring.append((bio_mutate(child1), 0))
offspring.append((bio_mutate(child2), 0))
# Возвращаем новое поколение
return survivors + offspring
# --- UI ---
st.title("🔴 Живой эфир мутаций ДНК")
start = st.button("▶️ Старт эфира")
stop = st.checkbox("⏹️ Остановить")
plot_placeholder = st.empty()
if start:
# Начальная популяция
population = [(random.choices(bases, k=seqlen), 0) for _ in range(population_size)]
stat_bist_counts = []
stat_entropy = []
step = 0
while True:
if stop:
st.warning("⏹️ Эфир остановлен пользователем.")
break
# Мутация и оценка каждого организма в популяции
for i in range(population_size):
seq, _ = population[i]
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
ent = compute_entropy(torsion_profile)
population[i] = (seq, ent)
# Применяем эволюционный алгоритм
population = genetic_algorithm(population)
# Статистика для отображения
stat_bist_counts.append(len(population))
ent = np.mean([ind[1] for ind in population]) # средняя энтропия
stat_entropy.append(ent)
acorr = compute_autocorr(np.array([ANGLE_MAP.get(nt, 0.0) for nt in population[0][0]]))
fig, axs = plt.subplots(3, 1, figsize=(10, 8))
plt.subplots_adjust(hspace=0.45)
axs[0].plot([ANGLE_MAP.get(nt, 0.0) for nt in population[0][0]], color='royalblue')
axs[0].set_ylim(-200, 200)
axs[0].set_title(f"Шаг {step}: {population[0][0]}")
axs[0].set_ylabel("Торсионный угол")
axs[1].plot(stat_bist_counts, '-o', color='crimson', markersize=4)
axs[1].set_ylabel("Биомашины")
axs[1].set_title("Количество машин")
axs[2].bar(np.arange(6), acorr[:6], color='teal')
axs[2].set_title(f"Автокорреляция / Энтропия: {ent:.2f}")
axs[2].set_xlabel("Лаг")
plot_placeholder.pyplot(fig)
plt.close(fig)
step += 1
time.sleep(0.3)
|