File size: 5,312 Bytes
6c5a763
3ffebe8
599d710
3ffebe8
6c5a763
 
ab731e4
6c5a763
3ffebe8
6c5a763
 
3ffebe8
154fef1
 
cab60db
6c5a763
 
3ffebe8
 
f1e60b9
3ffebe8
 
 
 
 
 
 
 
 
 
f1e60b9
3ffebe8
 
 
396e0c2
 
f1e60b9
3ffebe8
 
 
 
f1e60b9
3ffebe8
 
 
716b99a
 
3ffebe8
 
716b99a
cab60db
6c5a763
 
 
 
 
 
 
 
 
 
 
 
154fef1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c5a763
154fef1
 
ab731e4
6c5a763
 
70faa9c
 
ce76895
599d710
 
70faa9c
154fef1
 
6c5a763
 
 
70faa9c
 
 
 
 
 
154fef1
 
 
 
 
 
 
 
 
70faa9c
154fef1
 
 
6c5a763
154fef1
6c5a763
154fef1
599d710
 
154fef1
6c5a763
154fef1
599d710
396e0c2
6c5a763
 
 
 
 
 
 
455c7bd
599d710
 
30998ff
70faa9c
599d710
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import random
from scipy.stats import entropy as scipy_entropy
import time

# --- ПАРАМЕТРЫ ---
seqlen = 60
min_run, max_run = 1, 2
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
bases = ['A', 'C', 'G', 'T']
population_size = 10  # размер популяции "организмов"
survival_rate = 0.5  # процент выживших для следующего поколения

# --- ФУНКЦИИ ---

def bio_mutate(seq):
    r = random.random()
    if r < 0.70:
        idx = random.randint(0, len(seq)-1)
        orig = seq[idx]
        prob = random.random()
        if orig in 'AG':
            newbase = 'C' if prob < 0.65 else random.choice(['T', 'C'])
        elif orig in 'CT':
            newbase = 'G' if prob < 0.65 else random.choice(['A', 'G'])
        else:
            newbase = random.choice([b for b in bases if b != orig])
        seq = seq[:idx] + newbase + seq[idx+1:]
    elif r < 0.80:
        idx = random.randint(0, len(seq)-1)
        ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
        seq = seq[:idx] + ins + seq[idx:]
        if len(seq) > seqlen:
            seq = seq[:seqlen]
    elif r < 0.90:
        if len(seq) > 4:
            idx = random.randint(0, len(seq)-2)
            dell = random.randint(1, min(3, len(seq)-idx))
            seq = seq[:idx] + seq[idx+dell:]
    else:
        if len(seq) > 10:
            start = random.randint(0, len(seq)-6)
            end = start + random.randint(3,6)
            subseq = seq[start:end][::-1]
            seq = seq[:start] + subseq + seq[end:]
    while len(seq) < seqlen:
        seq += random.choice(bases)
    return seq[:seqlen]

def compute_autocorr(profile):
    profile = profile - np.mean(profile)
    result = np.correlate(profile, profile, mode='full')
    result = result[result.size // 2:]
    norm = np.max(result) if np.max(result) != 0 else 1
    return result[:10]/norm

def compute_entropy(profile):
    vals, counts = np.unique(profile, return_counts=True)
    p = counts / counts.sum()
    return scipy_entropy(p, base=2)

def genetic_algorithm(population):
    """Эволюционный алгоритм для отбора и мутации."""
    # Отбор лучших организмов
    population.sort(key=lambda x: x[1])  # сортируем по фитнесу (энтропия)
    survivors = population[:int(population_size * survival_rate)]
    
    # Кроссовер: создаем новых организмов на основе выживших
    offspring = []
    for i in range(len(survivors) // 2):
        parent1, parent2 = survivors[i], survivors[-i-1]
        crossover_point = random.randint(0, seqlen)
        child1 = parent1[0][:crossover_point] + parent2[0][crossover_point:]
        child2 = parent2[0][:crossover_point] + parent1[0][crossover_point:]
        offspring.append((bio_mutate(child1), 0))
        offspring.append((bio_mutate(child2), 0))
    
    # Возвращаем новое поколение
    return survivors + offspring

# --- UI ---
st.title("🔴 Живой эфир мутаций ДНК")
start = st.button("▶️ Старт эфира")
stop = st.checkbox("⏹️ Остановить")

plot_placeholder = st.empty()

if start:
    # Начальная популяция
    population = [(random.choices(bases, k=seqlen), 0) for _ in range(population_size)]
    stat_bist_counts = []
    stat_entropy = []

    step = 0
    while True:
        if stop:
            st.warning("⏹️ Эфир остановлен пользователем.")
            break

        # Мутация и оценка каждого организма в популяции
        for i in range(population_size):
            seq, _ = population[i]
            torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
            ent = compute_entropy(torsion_profile)
            population[i] = (seq, ent)
        
        # Применяем эволюционный алгоритм
        population = genetic_algorithm(population)

        # Статистика для отображения
        stat_bist_counts.append(len(population))
        ent = np.mean([ind[1] for ind in population])  # средняя энтропия
        stat_entropy.append(ent)
        acorr = compute_autocorr(np.array([ANGLE_MAP.get(nt, 0.0) for nt in population[0][0]]))

        fig, axs = plt.subplots(3, 1, figsize=(10, 8))
        plt.subplots_adjust(hspace=0.45)

        axs[0].plot([ANGLE_MAP.get(nt, 0.0) for nt in population[0][0]], color='royalblue')
        axs[0].set_ylim(-200, 200)
        axs[0].set_title(f"Шаг {step}: {population[0][0]}")
        axs[0].set_ylabel("Торсионный угол")

        axs[1].plot(stat_bist_counts, '-o', color='crimson', markersize=4)
        axs[1].set_ylabel("Биомашины")
        axs[1].set_title("Количество машин")

        axs[2].bar(np.arange(6), acorr[:6], color='teal')
        axs[2].set_title(f"Автокорреляция / Энтропия: {ent:.2f}")
        axs[2].set_xlabel("Лаг")

        plot_placeholder.pyplot(fig)
        plt.close(fig)

        step += 1
        time.sleep(0.3)