File size: 3,646 Bytes
3ffebe8
599d710
3ffebe8
cab60db
ab731e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ffebe8
 
cab60db
3ffebe8
 
f1e60b9
3ffebe8
 
 
 
 
 
 
 
 
 
f1e60b9
3ffebe8
 
 
396e0c2
 
f1e60b9
3ffebe8
 
 
 
f1e60b9
3ffebe8
 
 
716b99a
 
3ffebe8
 
716b99a
cab60db
70faa9c
ab731e4
 
 
 
 
 
70faa9c
 
ce76895
599d710
 
70faa9c
3ffebe8
70faa9c
ab731e4
 
70faa9c
 
 
 
 
0bc0cd3
716b99a
70faa9c
ab731e4
 
 
f1e60b9
ab731e4
 
599d710
 
 
 
 
396e0c2
ab731e4
 
 
455c7bd
599d710
 
30998ff
70faa9c
599d710
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import numpy as np
import matplotlib.pyplot as plt
import random

# Преобразование последовательности в фрактальные точки на основе торсионных углов
def sequence_to_torsion(seq):
    ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
    return np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])

# Вычисление корреляционной размерности
def correlation_dimension(data, max_radius=20, min_points=5):
    N = len(data)
    dimensions = []
    for radius in range(1, max_radius):
        count = 0
        for i in range(N):
            for j in range(i + 1, N):
                if np.abs(data[i] - data[j]) < radius:
                    count += 1
        if count > min_points:
            dimension = np.log(count) / np.log(radius)
            dimensions.append(dimension)
    
    return np.mean(dimensions) if dimensions else 0

# --- Основной код ---

seqlen = 60
bases = ['A', 'C', 'G', 'T']

def bio_mutate(seq):
    r = random.random()
    if r < 0.70:
        idx = random.randint(0, len(seq)-1)
        orig = seq[idx]
        prob = random.random()
        if orig in 'AG':
            newbase = 'C' if prob < 0.65 else random.choice(['T', 'C'])
        elif orig in 'CT':
            newbase = 'G' if prob < 0.65 else random.choice(['A', 'G'])
        else:
            newbase = random.choice([b for b in bases if b != orig])
        seq = seq[:idx] + newbase + seq[idx+1:]
    elif r < 0.80:
        idx = random.randint(0, len(seq)-1)
        ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
        seq = seq[:idx] + ins + seq[idx:]
        if len(seq) > seqlen:
            seq = seq[:seqlen]
    elif r < 0.90:
        if len(seq) > 4:
            idx = random.randint(0, len(seq)-2)
            dell = random.randint(1, min(3, len(seq)-idx))
            seq = seq[:idx] + seq[idx+dell:]
    else:
        if len(seq) > 10:
            start = random.randint(0, len(seq)-6)
            end = start + random.randint(3,6)
            subseq = seq[start:end][::-1]
            seq = seq[:start] + subseq + seq[end:]
    while len(seq) < seqlen:
        seq += random.choice(bases)
    return seq[:seqlen]

# --- UI ---

import streamlit as st
import time

st.title("🔴 Живой эфир мутаций ДНК с фрактальной размерностью")

start = st.button("▶️ Старт эфира")
stop = st.checkbox("⏹️ Остановить")

plot_placeholder = st.empty()

if start:
    seq = ''.join(random.choices(bases, k=seqlen))
    step = 0
    stat_fractal_dimension = []
    
    while True:
        if stop:
            st.warning("⏹️ Эфир остановлен пользователем.")
            break

        if step != 0:
            seq = bio_mutate(seq)

        torsion_profile = sequence_to_torsion(seq)
        fractal_dim = correlation_dimension(torsion_profile)
        stat_fractal_dimension.append(fractal_dim)

        # Визуализация
        fig, axs = plt.subplots(2, 1, figsize=(10, 8))
        plt.subplots_adjust(hspace=0.45)

        axs[0].plot(torsion_profile, color='royalblue')
        axs[0].set_title(f"Шаг {step}: {seq}")
        axs[0].set_ylabel("Торсионный угол")

        axs[1].plot(stat_fractal_dimension, '-o', color='green', markersize=4)
        axs[1].set_title(f"Фрактальная размерность: {fractal_dim:.3f}")
        axs[1].set_xlabel("Шаг")

        plot_placeholder.pyplot(fig)
        plt.close(fig)

        step += 1
        time.sleep(0.3)