llm-apiku / app.py
Dnfs's picture
Update app.py
b24565b verified
raw
history blame
3.49 kB
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from ctransformers import AutoModelForCausalLM
import os
import uvicorn
from typing import Optional, List
import logging
from contextlib import asynccontextmanager
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global model variable
model = None
# Lifespan manager to load the model on startup
@asynccontextmanager
async def lifespan(app: FastAPI):
# This code runs on startup
global model
model_path = "./model"
model_file = "gema-4b-indra10k-model1-q4_k_m.gguf"
try:
if not os.path.exists(model_path) or not os.path.exists(os.path.join(model_path, model_file)):
raise RuntimeError("Model files not found. Ensure the model was downloaded in the Docker build.")
logger.info(f"Loading model from local path: {model_path}")
# FIX: Changed model_type from "llama" to "gemma"
model = AutoModelForCausalLM.from_pretrained(
model_path,
model_file=model_file,
model_type="gemma", # This was the main cause of the error
gpu_layers=0,
context_length=2048,
threads=os.cpu_count() or 1
)
logger.info("Model loaded successfully!")
except Exception as e:
logger.error(f"Failed to load model: {e}")
# Raising an exception during startup will prevent the app from starting
raise e
yield
# This code runs on shutdown (optional)
logger.info("Application is shutting down.")
app = FastAPI(title="Gema 4B Model API", version="1.0.0", lifespan=lifespan)
# Request model
class TextRequest(BaseModel):
inputs: str
system_prompt: Optional[str] = None
max_tokens: Optional[int] = 512
temperature: Optional[float] = 0.7
top_k: Optional[int] = 50
top_p: Optional[float] = 0.9
repeat_penalty: Optional[float] = 1.1
stop: Optional[List[str]] = None
# Response model
class TextResponse(BaseModel):
generated_text: str
@app.post("/generate", response_model=TextResponse)
async def generate_text(request: TextRequest):
if model is None:
raise HTTPException(status_code=503, detail="Model is not ready or failed to load. Please check logs.")
try:
if request.system_prompt:
full_prompt = f"{request.system_prompt}\n\nUser: {request.inputs}\nAssistant:"
else:
full_prompt = request.inputs
generated_text = model(
full_prompt,
max_new_tokens=request.max_tokens,
temperature=request.temperature,
top_p=request.top_p,
top_k=request.top_k,
repetition_penalty=request.repeat_penalty,
stop=request.stop or []
)
if "Assistant:" in generated_text:
generated_text = generated_text.split("Assistant:")[-1].strip()
return TextResponse(generated_text=generated_text)
except Exception as e:
logger.error(f"Generation error: {e}")
raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}")
@app.get("/health")
async def health_check():
return {"status": "healthy", "model_loaded": model is not None}
@app.get("/")
async def root():
return {"message": "Gema 4B Model API", "docs": "/docs"}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000, log_level="info")