dnyaneshb18 commited on
Commit
b298f1b
·
1 Parent(s): 1da9235

chatbot with tools- langgraph

Browse files
.github/workflows/main.yml ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Sync to Hugging Face Space
2
+ on:
3
+ push:
4
+ branches: [main]
5
+
6
+ # to run this workflow manually from the Actions tab
7
+ workflow_dispatch:
8
+
9
+ jobs:
10
+ sync-to-hub:
11
+ runs-on: ubuntu-latest
12
+ steps:
13
+ - uses: actions/checkout@v3
14
+ with:
15
+ fetch-depth: 0
16
+ lfs: false
17
+
18
+ - name: Ignore large files
19
+ run : git filter-branch --index-filter 'git rm -rf --cached --ignore-unmatch "Rag_Documents/layout-parser-paper.pdf"' HEAD
20
+
21
+ - name: Push to hub
22
+ env:
23
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
24
+ run: git push --force https://Dnyaneshb18:[email protected]/spaces/Dnyaneshb18/langgraph-agenticai main
25
+
26
+
.gitignore ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ venv/
2
+ .DS_Store
3
+ __pycache__/
README.md CHANGED
@@ -1 +1,17 @@
1
- # Agentic-AI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: LanggraphAgenticAI
3
+ emoji: 🐨
4
+ colorFrom: blue
5
+ colorTo: red
6
+ sdk: streamlit
7
+ sdk_version: 1.42.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: apache-2.0
11
+ short_description: Refined langgraphAgenticAI
12
+ ---
13
+
14
+ ### End To End Agentic AI Projects
15
+
16
+ The project is in development
17
+
app.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ from src.langgraphagenticai.main import load_langgraph_agenticai_app
2
+
3
+
4
+ if __name__=="__main__":
5
+ load_langgraph_agenticai_app()
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ langchain
2
+ langgraph
3
+ langchain_community
4
+ langchain_core
5
+ langchain_groq
6
+ langchain_openai
7
+ faiss-cpu
8
+ streamlit
src/__init__.py ADDED
File without changes
src/langgraphagenticai/LLMS/__init__.py ADDED
File without changes
src/langgraphagenticai/LLMS/groqllm.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import streamlit as st
3
+ from langchain_groq import ChatGroq
4
+
5
+ class GroqLLM:
6
+ def __init__(self,user_controls_input):
7
+ self.user_controls_input=user_controls_input
8
+
9
+ def get_llm_model(self):
10
+ try:
11
+ groq_api_key=self.user_controls_input['GROQ_API_KEY']
12
+ selected_groq_model=self.user_controls_input['selected_groq_model']
13
+ if groq_api_key=='' and os.environ["GROQ_API_KEY"] =='':
14
+ st.error("Please Enter the Groq API KEY")
15
+
16
+ llm = ChatGroq(api_key =groq_api_key, model=selected_groq_model)
17
+
18
+ except Exception as e:
19
+ raise ValueError(f"Error Occurred with Exception : {e}")
20
+ return llm
src/langgraphagenticai/__init__.py ADDED
File without changes
src/langgraphagenticai/graph/.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ venv/
2
+ __pycache__/
src/langgraphagenticai/graph/__init__.py ADDED
File without changes
src/langgraphagenticai/graph/graph_builder.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langgraph.graph import StateGraph, START,END, MessagesState
2
+ from langgraph.prebuilt import tools_condition,ToolNode
3
+ from langchain_core.prompts import ChatPromptTemplate
4
+ from src.langgraphagenticai.state.state import State
5
+ from src.langgraphagenticai.nodes.basic_chatbot_node import BasicChatbotNode
6
+ from src.langgraphagenticai.nodes.chatbot_with_Tool_node import ChatbotWithToolNode
7
+ from src.langgraphagenticai.tools.serach_tool import get_tools,create_tool_node
8
+
9
+
10
+
11
+
12
+ class GraphBuilder:
13
+
14
+ def __init__(self,model):
15
+ self.llm=model
16
+ self.graph_builder=StateGraph(State)
17
+
18
+ def basic_chatbot_build_graph(self):
19
+ """
20
+ Builds a basic chatbot graph using LangGraph.
21
+ This method initializes a chatbot node using the `BasicChatbotNode` class
22
+ and integrates it into the graph. The chatbot node is set as both the
23
+ entry and exit point of the graph.
24
+ """
25
+ self.basic_chatbot_node=BasicChatbotNode(self.llm)
26
+ self.graph_builder.add_node("chatbot",self.basic_chatbot_node.process)
27
+ self.graph_builder.add_edge(START,"chatbot")
28
+ self.graph_builder.add_edge("chatbot",END)
29
+
30
+
31
+ def chatbot_with_tools_build_graph(self):
32
+ """
33
+ Builds an advanced chatbot graph with tool integration.
34
+ This method creates a chatbot graph that includes both a chatbot node
35
+ and a tool node. It defines tools, initializes the chatbot with tool
36
+ capabilities, and sets up conditional and direct edges between nodes.
37
+ The chatbot node is set as the entry point.
38
+ """
39
+ ## Define the tool and tool node
40
+
41
+ tools=get_tools()
42
+ tool_node=create_tool_node(tools)
43
+
44
+ ##Define LLM
45
+ llm = self.llm
46
+
47
+ # Define chatbot node
48
+ obj_chatbot_with_node = ChatbotWithToolNode(llm)
49
+ chatbot_node = obj_chatbot_with_node.create_chatbot(tools)
50
+
51
+ # Add nodes
52
+ self.graph_builder.add_node("chatbot", chatbot_node)
53
+ self.graph_builder.add_node("tools", tool_node)
54
+
55
+ # Define conditional and direct edges
56
+ self.graph_builder.add_edge(START,"chatbot")
57
+ self.graph_builder.add_conditional_edges("chatbot", tools_condition)
58
+ self.graph_builder.add_edge("tools","chatbot")
59
+
60
+
61
+
62
+
63
+ def setup_graph(self, usecase: str):
64
+ """
65
+ Sets up the graph for the selected use case.
66
+ """
67
+ if usecase == "Basic Chatbot":
68
+ self.basic_chatbot_build_graph()
69
+
70
+ if usecase == "Chatbot with Tool":
71
+ self.chatbot_with_tools_build_graph()
72
+ return self.graph_builder.compile()
73
+
74
+
75
+
76
+
77
+
78
+
79
+
src/langgraphagenticai/main.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import json
3
+ from src.langgraphagenticai.ui.streamlitui.loadui import LoadStreamlitUI
4
+ from src.langgraphagenticai.LLMS.groqllm import GroqLLM
5
+ from src.langgraphagenticai.graph.graph_builder import GraphBuilder
6
+ from src.langgraphagenticai.ui.streamlitui.display_result import DisplayResultStreamlit
7
+
8
+ # MAIN Function START
9
+ def load_langgraph_agenticai_app():
10
+ """
11
+ Loads and runs the LangGraph AgenticAI application with Streamlit UI.
12
+ This function initializes the UI, handles user input, configures the LLM model,
13
+ sets up the graph based on the selected use case, and displays the output while
14
+ implementing exception handling for robustness.
15
+ """
16
+
17
+ # Load UI
18
+ ui = LoadStreamlitUI()
19
+ user_input = ui.load_streamlit_ui()
20
+
21
+ if not user_input:
22
+ st.error("Error: Failed to load user input from the UI.")
23
+ return
24
+
25
+ # Text input for user message
26
+ if st.session_state.IsFetchButtonClicked:
27
+ user_message = st.session_state.timeframe
28
+ else :
29
+ user_message = st.chat_input("Enter your message:")
30
+
31
+ if user_message:
32
+ try:
33
+ # Configure LLM
34
+ obj_llm_config = GroqLLM(user_controls_input=user_input)
35
+ model = obj_llm_config.get_llm_model()
36
+
37
+ if not model:
38
+ st.error("Error: LLM model could not be initialized.")
39
+ return
40
+
41
+ # Initialize and set up the graph based on use case
42
+ usecase = user_input.get('selected_usecase')
43
+ if not usecase:
44
+ st.error("Error: No use case selected.")
45
+ return
46
+
47
+
48
+ ### Graph Builder
49
+ graph_builder=GraphBuilder(model)
50
+ try:
51
+ graph = graph_builder.setup_graph(usecase)
52
+ DisplayResultStreamlit(usecase,graph,user_message).display_result_on_ui()
53
+ except Exception as e:
54
+ st.error(f"Error: Graph setup failed - {e}")
55
+ return
56
+
57
+
58
+ except Exception as e:
59
+ raise ValueError(f"Error Occurred with Exception : {e}")
60
+
61
+
62
+
63
+
64
+
65
+
66
+
src/langgraphagenticai/nodes/__init__.py ADDED
File without changes
src/langgraphagenticai/nodes/basic_chatbot_node.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from src.langgraphagenticai.state.state import State
2
+
3
+ class BasicChatbotNode:
4
+ """
5
+ Basic chatbot logic implementation.
6
+ """
7
+ def __init__(self,model):
8
+ self.llm = model
9
+
10
+ def process(self, state: State) -> dict:
11
+ """
12
+ Processes the input state and generates a chatbot response.
13
+ """
14
+ return {"messages":self.llm.invoke(state['messages'])}
src/langgraphagenticai/nodes/chatbot_with_Tool_node.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from src.langgraphagenticai.state.state import State
2
+
3
+ class ChatbotWithToolNode:
4
+ """
5
+ Chatbot logic enhanced with tool integration.
6
+ """
7
+ def __init__(self,model):
8
+ self.llm = model
9
+
10
+ def process(self, state: State) -> dict:
11
+ """
12
+ Processes the input state and generates a response with tool integration.
13
+ """
14
+ user_input = state["messages"][-1] if state["messages"] else ""
15
+ llm_response = self.llm.invoke([{"role": "user", "content": user_input}])
16
+
17
+ # Simulate tool-specific logic
18
+ tools_response = f"Tool integration for: '{user_input}'"
19
+
20
+ return {"messages": [llm_response, tools_response]}
21
+
22
+ def create_chatbot(self, tools):
23
+ """
24
+ Returns a chatbot node function.
25
+ """
26
+ llm_with_tools = self.llm.bind_tools(tools)
27
+
28
+ def chatbot_node(state: State):
29
+ """
30
+ Chatbot logic for processing the input state and returning a response.
31
+ """
32
+ return {"messages": [llm_with_tools.invoke(state["messages"])]}
33
+
34
+ return chatbot_node
35
+
36
+
37
+
38
+
39
+
40
+
41
+
42
+
43
+
src/langgraphagenticai/state/__init__.py ADDED
File without changes
src/langgraphagenticai/state/state.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Annotated, Literal, Optional
2
+ from typing_extensions import TypedDict
3
+ from langgraph.graph.message import add_messages
4
+ from typing import TypedDict, Annotated, List
5
+ from langchain_core.messages import HumanMessage, AIMessage
6
+
7
+ class State(TypedDict):
8
+ """
9
+ Represents the structure of the state used in the graph.
10
+ """
11
+ messages: Annotated[list, add_messages]
src/langgraphagenticai/tools/__init__.py ADDED
File without changes
src/langgraphagenticai/tools/serach_tool.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain_community.tools.tavily_search import TavilySearchResults
2
+ from langgraph.prebuilt import ToolNode
3
+
4
+ def get_tools():
5
+ """
6
+ Return the list of tools to be used in the chatbot
7
+ """
8
+ tools=[TavilySearchResults(max_results=2)]
9
+ return tools
10
+
11
+ def create_tool_node(tools):
12
+ """
13
+ creates and returns a tool node for the graph
14
+ """
15
+ return ToolNode(tools=tools)
16
+
17
+
src/langgraphagenticai/ui/__init__.py ADDED
File without changes
src/langgraphagenticai/ui/streamlitui/display_result.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from langchain_core.messages import HumanMessage,AIMessage,ToolMessage
3
+ import json
4
+
5
+
6
+ class DisplayResultStreamlit:
7
+ def __init__(self,usecase,graph,user_message):
8
+ self.usecase= usecase
9
+ self.graph = graph
10
+ self.user_message = user_message
11
+
12
+ def display_result_on_ui(self):
13
+ usecase= self.usecase
14
+ graph = self.graph
15
+ user_message = self.user_message
16
+ if usecase =="Basic Chatbot":
17
+ for event in graph.stream({'messages':("user",user_message)}):
18
+ print(event.values())
19
+ for value in event.values():
20
+ print(value['messages'])
21
+ with st.chat_message("user"):
22
+ st.write(user_message)
23
+ with st.chat_message("assistant"):
24
+ st.write(value["messages"].content)
25
+
26
+ elif usecase=="Chatbot with Tool":
27
+ # Prepare state and invoke the graph
28
+ initial_state = {"messages": [user_message]}
29
+ res = graph.invoke(initial_state)
30
+ for message in res['messages']:
31
+ if type(message) == HumanMessage:
32
+ with st.chat_message("user"):
33
+ st.write(message.content)
34
+ elif type(message)==ToolMessage:
35
+ with st.chat_message("ai"):
36
+ st.write("Tool Call Start")
37
+ st.write(message.content)
38
+ st.write("Tool Call End")
39
+ elif type(message)==AIMessage and message.content:
40
+ with st.chat_message("assistant"):
41
+ st.write(message.content)
42
+
src/langgraphagenticai/ui/streamlitui/loadui.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ from datetime import date
4
+
5
+ from langchain_core.messages import AIMessage,HumanMessage
6
+ from src.langgraphagenticai.ui.uiconfigfile import Config
7
+
8
+
9
+ class LoadStreamlitUI:
10
+ def __init__(self):
11
+ self.config = Config() # config
12
+ self.user_controls = {}
13
+
14
+ def initialize_session(self):
15
+ return {
16
+ "current_step": "requirements",
17
+ "requirements": "",
18
+ "user_stories": "",
19
+ "po_feedback": "",
20
+ "generated_code": "",
21
+ "review_feedback": "",
22
+ "decision": None
23
+ }
24
+
25
+
26
+
27
+ def load_streamlit_ui(self):
28
+ st.set_page_config(page_title= "🤖 " + self.config.get_page_title(), layout="wide")
29
+ st.header("🤖 " + self.config.get_page_title())
30
+ st.session_state.timeframe = ''
31
+ st.session_state.IsFetchButtonClicked = False
32
+ st.session_state.IsSDLC = False
33
+
34
+
35
+
36
+ with st.sidebar:
37
+ # Get options from config
38
+ llm_options = self.config.get_llm_options()
39
+ usecase_options = self.config.get_usecase_options()
40
+
41
+ # LLM selection
42
+ self.user_controls["selected_llm"] = st.selectbox("Select LLM", llm_options)
43
+
44
+ if self.user_controls["selected_llm"] == 'Groq':
45
+ # Model selection
46
+ model_options = self.config.get_groq_model_options()
47
+ self.user_controls["selected_groq_model"] = st.selectbox("Select Model", model_options)
48
+ # API key input
49
+ self.user_controls["GROQ_API_KEY"] = st.session_state["GROQ_API_KEY"] = st.text_input("API Key",
50
+ type="password")
51
+ # Validate API key
52
+ if not self.user_controls["GROQ_API_KEY"]:
53
+ st.warning("⚠️ Please enter your GROQ API key to proceed. Don't have? refer : https://console.groq.com/keys ")
54
+
55
+
56
+ # Use case selection
57
+ self.user_controls["selected_usecase"] = st.selectbox("Select Usecases", usecase_options)
58
+
59
+ if self.user_controls["selected_usecase"] =="Chatbot with Tool":
60
+ # API key input
61
+ os.environ["TAVILY_API_KEY"] = self.user_controls["TAVILY_API_KEY"] = st.session_state["TAVILY_API_KEY"] = st.text_input("TAVILY API KEY",
62
+ type="password")
63
+ # Validate API key
64
+ if not self.user_controls["TAVILY_API_KEY"]:
65
+ st.warning("⚠️ Please enter your TAVILY_API_KEY key to proceed. Don't have? refer : https://app.tavily.com/home")
66
+
67
+ if "state" not in st.session_state:
68
+ st.session_state.state = self.initialize_session()
69
+
70
+
71
+
72
+ return self.user_controls
src/langgraphagenticai/ui/uiconfigfile.ini ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ [DEFAULT]
2
+ PAGE_TITLE = LangGraph: Build Stateful Agentic AI graph
3
+ LLM_OPTIONS = Groq
4
+ USECASE_OPTIONS = Basic Chatbot, Chatbot with Tool
5
+ GROQ_MODEL_OPTIONS = mixtral-8x7b-32768, llama3-8b-8192, llama3-70b-8192, gemma-7b-i
6
+
src/langgraphagenticai/ui/uiconfigfile.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from configparser import ConfigParser
2
+
3
+ class Config:
4
+ def __init__(self,config_file="./src/langgraphagenticai/ui/uiconfigfile.ini"):
5
+ self.config=ConfigParser()
6
+ self.config.read(config_file)
7
+
8
+ def get_llm_options(self):
9
+ return self.config["DEFAULT"].get("LLM_OPTIONS").split(", ")
10
+
11
+ def get_usecase_options(self):
12
+ return self.config["DEFAULT"].get("USECASE_OPTIONS").split(", ")
13
+
14
+ def get_groq_model_options(self):
15
+ return self.config["DEFAULT"].get("GROQ_MODEL_OPTIONS").split(", ")
16
+
17
+ def get_page_title(self):
18
+ return self.config["DEFAULT"].get("PAGE_TITLE")
19
+
src/langgraphagenticai/vectorstore/__init__.py ADDED
File without changes
test_nb.ipynb ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [
8
+ {
9
+ "name": "stdout",
10
+ "output_type": "stream",
11
+ "text": [
12
+ "1\n"
13
+ ]
14
+ }
15
+ ],
16
+ "source": [
17
+ "print(1)"
18
+ ]
19
+ },
20
+ {
21
+ "cell_type": "code",
22
+ "execution_count": null,
23
+ "metadata": {},
24
+ "outputs": [],
25
+ "source": []
26
+ }
27
+ ],
28
+ "metadata": {
29
+ "kernelspec": {
30
+ "display_name": "Python 3",
31
+ "language": "python",
32
+ "name": "python3"
33
+ },
34
+ "language_info": {
35
+ "codemirror_mode": {
36
+ "name": "ipython",
37
+ "version": 3
38
+ },
39
+ "file_extension": ".py",
40
+ "mimetype": "text/x-python",
41
+ "name": "python",
42
+ "nbconvert_exporter": "python",
43
+ "pygments_lexer": "ipython3",
44
+ "version": "3.12.0"
45
+ }
46
+ },
47
+ "nbformat": 4,
48
+ "nbformat_minor": 2
49
+ }