File size: 6,827 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#pragma once

////////////////////////////////////////////////////////////////////////////////////////////////////

namespace layer_norm {
template<
    uint32_t HIDDEN_SIZE_,
    typename weight_t_,
    typename input_t_,
    typename residual_t_,
    typename output_t_,
    typename compute_t_,
    typename index_t_,
    uint32_t THREADS_PER_CTA_
>
struct Kernel_traits_base {

    using weight_t = weight_t_;
    using input_t = input_t_;
    using residual_t = residual_t_;
    using output_t = output_t_;
    using compute_t = compute_t_;
    using index_t = index_t_;

    enum { HIDDEN_SIZE = HIDDEN_SIZE_ };
    enum { THREADS_PER_CTA = THREADS_PER_CTA_ };
    enum { THREADS_PER_WARP = 32 };

};

////////////////////////////////////////////////////////////////////////////////////////////////////

template<
    uint32_t HIDDEN_SIZE_,
    typename weight_t_,
    typename input_t_,
    typename residual_t_,
    typename output_t_,
    typename compute_t_,
    typename index_t_,
    bool Has_colscale,
    uint32_t THREADS_PER_CTA_,
    uint32_t BYTES_PER_LDG_,
    typename Base = Kernel_traits_base<HIDDEN_SIZE_,
                                        weight_t_,
                                        input_t_,
                                        residual_t_,
                                        output_t_,
                                        compute_t_,
                                        index_t_,
                                        THREADS_PER_CTA_>
>
struct Kernel_traits_finalize : public Base {
    enum { ROWS_PER_CTA = Base::THREADS_PER_CTA / Base::THREADS_PER_WARP };
    static_assert((int) ROWS_PER_CTA <= (int) Base::THREADS_PER_WARP);
    // Bytes per global load from the input. 
    enum { BYTES_PER_LDG = BYTES_PER_LDG_ };
    // Number of elements fetched by a global load.
    enum { ELTS_PER_LDG = BYTES_PER_LDG / sizeof(compute_t_) };
    // Bytes per global store of the weights.
    enum { BYTES_PER_STG = ELTS_PER_LDG * sizeof(weight_t_) };
    static_assert(sizeof(BYTES_PER_LDG) == 4, "Conflict-free smem transpose only implemented for 4B compute type!");
    static_assert(Base::THREADS_PER_CTA == ROWS_PER_CTA * Base::THREADS_PER_WARP, "We assume one warp per row!");
    // The total number of BYTES_PER_LDG-wide words in a hidden vector.
    enum { COLS = HIDDEN_SIZE_ * sizeof(compute_t_) / BYTES_PER_LDG };
    static_assert(COLS * BYTES_PER_LDG == HIDDEN_SIZE_ * sizeof(compute_t_));

    // Shared memory size to transpose the CTA result.
    enum { SMEM_BYTES_TRANSPOSE = Base::THREADS_PER_CTA * BYTES_PER_LDG };
    // Shared memory size to coalsece the CTA result.
    enum { SMEM_BYTES_OUTPUT = Base::THREADS_PER_WARP * BYTES_PER_LDG };
    // Shared memory requirement per CTA. 
    static constexpr int NUM_FACTORS = Has_colscale ? 3 : 2;
    enum { SMEM_BYTES_PER_CTA = NUM_FACTORS * SMEM_BYTES_TRANSPOSE + NUM_FACTORS * SMEM_BYTES_OUTPUT };

    // The type of the reducer.
    using Reducer = layer_norm::Reducer<compute_t_, 1, 1, 1>;

    // Condition for the whole CTA to participate in syncthreads.
    static_assert(COLS % Base::THREADS_PER_WARP == 0);
    enum { CTAS = COLS / Base::THREADS_PER_WARP };
}; 

////////////////////////////////////////////////////////////////////////////////////////////////////


template<
    typename weight_t_,
    typename input_t_,
    typename residual_t_,
    typename output_t_,
    typename compute_t_,
    typename index_t_,
    uint32_t HIDDEN_SIZE_, 
    uint32_t CTAS_PER_ROW_, 
    uint32_t WARPS_M_, 
    uint32_t WARPS_N_, 
    uint32_t BYTES_PER_LDG_ = 16,
    typename Base = Kernel_traits_base<
        HIDDEN_SIZE_,
        weight_t_, 
        input_t_,
        residual_t_,
        output_t_, 
        compute_t_, 
        index_t_, 
        WARPS_M_*WARPS_N_*THREADS_PER_WARP
        >
>
struct Kernel_traits : public Base {

    using input_t = typename Base::input_t;
    using residual_t = typename Base::residual_t;
    using weight_t = typename Base::weight_t;
    using compute_t = typename Base::compute_t;
    using output_t = typename Base::output_t;
    using index_t = typename Base::index_t;
    // using mask_t = unsigned char;
    using mask_t = bool;

    enum { CTAS_PER_ROW = CTAS_PER_ROW_ };
    enum { WARPS_M = WARPS_M_ };
    enum { WARPS_N = WARPS_N_ };
    enum { COLS = HIDDEN_SIZE_ };
    enum { HIDDEN_SIZE = HIDDEN_SIZE_ };
    enum { BYTES_PER_LDG = BYTES_PER_LDG_ };
    enum { NUM_ELTS = BYTES_PER_LDG / sizeof(input_t) };

    enum { THREADS_PER_ROW = WARPS_N * THREADS_PER_WARP };
    enum { THREADS_PER_CTA = WARPS_M * THREADS_PER_ROW };
    enum { ROWS_PER_CTA = WARPS_M };

    enum { BYTES_PER_ROW = COLS * sizeof(input_t) };
    enum { BYTES_PER_ROW_PER_CTA = THREADS_PER_ROW * BYTES_PER_LDG };
    // Multi-row per CTA not supported for multi-CTA => no smem for WGRAD needed
    enum { SMEM_BYTES_WGRAD = CTAS_PER_ROW > 1 ? 0 : ROWS_PER_CTA * COLS * sizeof(compute_t) };
    static_assert(WARPS_M == 1 || CTAS_PER_ROW == 1);

    using reduce_t = typename layer_norm::TypeToVec2<compute_t>::Type;
    using Reducer = layer_norm::Reducer<reduce_t, CTAS_PER_ROW, WARPS_M, WARPS_N>; 

    enum { SMEM_BYTES_DGRAD = Reducer::SMEM_BYTES };
    enum { SMEM_BYTES = SMEM_BYTES_DGRAD  + SMEM_BYTES_WGRAD };

    using Ivec = layer_norm::Vec<input_t, NUM_ELTS>;
    using Rvec = layer_norm::Vec<residual_t, NUM_ELTS>;
    using Ovec = layer_norm::Vec<output_t, NUM_ELTS>;
    using Wvec = layer_norm::Vec<weight_t, NUM_ELTS>;
    using Cvec = layer_norm::Vec<compute_t, NUM_ELTS>;
    using Mvec = layer_norm::Vec<mask_t, NUM_ELTS>;
    enum { ELTS_PER_LDG = BYTES_PER_LDG / sizeof(input_t) };

    // Assume that each thread can handle the same number of elements in the output and weights as in the input.
    static_assert(sizeof(input_t) == sizeof(output_t));
    static_assert(sizeof(input_t) <= sizeof(residual_t));
    // The number of columns fetched per load from input: one per thread.
    enum { VEC_COLS_PER_LDG =  CTAS_PER_ROW * THREADS_PER_ROW };
    // The total number of vectorized loads/stores per hidden vector.
    enum { VEC_COLS = COLS / ELTS_PER_LDG };
    // The number of loads per thread for the input.
    enum { LDGS = VEC_COLS / VEC_COLS_PER_LDG };
    static_assert(LDGS * VEC_COLS_PER_LDG  == VEC_COLS);
    //static_assert(LDGS * BYTES_PER_ROW_PER_CTA * CTAS_PER_ROW == BYTES_PER_ROW, "");

    using Stats = layer_norm::Stats<compute_t, CTAS_PER_ROW, WARPS_M, WARPS_N>;
    enum { SMEM_BYTES_FWD = Stats::SMEM_BYTES };

};

////////////////////////////////////////////////////////////////////////////////////////////////////

}  // namespace layer_norm