Chatmariam / app.py
Docfile's picture
Update app.py
57456fd verified
raw
history blame
5.35 kB
import streamlit as st
import google.generativeai as genai
import os
import tempfile
import PIL.Image
import time
import ssl
from dotenv import load_dotenv
load_dotenv()
# Configure the API key
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
safety_settings = [
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"},
]
model = genai.GenerativeModel('gemini-1.5-flash-002', safety_settings=safety_settings,
system_instruction="Tu es un assistant intelligent. ton but est d'assister au mieux que tu peux. tu as été créé par Aenir et tu t'appelles Mariam")
# Function to get response from the model
# Gemini uses 'model' for assistant; Streamlit uses 'assistant'
def role_to_streamlit(role):
if role == "model":
return "assistant"
else:
return role
# Add a Gemini Chat history object to Streamlit session state
if "chat" not in st.session_state:
st.session_state.chat = model.start_chat(history=[])
# Display Form Title
st.title("Mariam AI!")
# File uploader
uploaded_files = st.file_uploader("Choose a file", accept_multiple_files=True)
# Display chat messages from history above current input box
for message in st.session_state.chat.history:
with st.chat_message(role_to_streamlit(message.role)):
st.markdown(message.parts[0].text)
def upload_and_process_file(file_path):
"""Upload et traite un fichier avec l'API Gemini avec gestion des erreurs améliorée"""
max_retries = 3
retry_delay = 2 # secondes
for attempt in range(max_retries):
try:
print(f"Tentative d'upload {attempt + 1}/{max_retries} pour {file_path}")
# Vérification du fichier
if not os.path.exists(file_path):
raise FileNotFoundError(f"Le fichier {file_path} n'existe pas")
file_size = os.path.getsize(file_path)
if file_size == 0:
raise ValueError(f"Le fichier {file_path} est vide")
# Upload du fichier
uploaded_file = genai.upload_file(path=file_path)
print(f"Upload réussi: {uploaded_file.uri}")
# Attente du traitement
timeout = 300 # 5 minutes
start_time = time.time()
while uploaded_file.state.name == "PROCESSING":
if time.time() - start_time > timeout:
raise TimeoutError("Timeout pendant le traitement du fichier")
print(
f"En attente du traitement... Temps écoulé: {int(time.time() - start_time)}s")
time.sleep(10)
uploaded_file = genai.get_file(uploaded_file.name)
if uploaded_file.state.name == "FAILED":
raise ValueError(
f"Échec du traitement: {uploaded_file.state.name}")
print(f"Traitement terminé avec succès: {uploaded_file.uri}")
return uploaded_file
except ssl.SSLError as e:
print(
f"Erreur SSL lors de l'upload (tentative {attempt + 1}): {e}")
if attempt < max_retries - 1:
time.sleep(retry_delay * (attempt + 1))
else:
raise
except Exception as e:
print(
f"Erreur lors de l'upload (tentative {attempt + 1}): {e}")
if attempt < max_retries - 1:
time.sleep(retry_delay * (attempt + 1))
else:
raise
# Accept user's next message, add to context, resubmit context to Gemini
if prompt := st.chat_input("Hey?"):
# Display user's last message
st.chat_message("user").markdown(prompt)
content = [prompt]
temp_files = []
try:
# Process uploaded files
for uploaded_file in uploaded_files:
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as temp_file:
temp_file.write(uploaded_file.getvalue())
temp_files.append(temp_file.name)
if uploaded_file.name.lower().endswith(('.png', '.jpg', '.jpeg', '.gif')):
content.append(PIL.Image.open(temp_file.name))
else:
processed_file = upload_and_process_file(temp_file.name)
content.append(processed_file)
# Send user entry to Gemini and read the response
response = model.generate_content(content)
# Add the response to the chat history
st.session_state.chat.history.extend([
genai.types.Part(text=prompt, role="user"),
genai.types.Part(text=response.text, role="model"),
])
# Display last
with st.chat_message("assistant"):
st.markdown(response.text)
except Exception as e:
st.error(f"An error occurred: {e}")
finally:
# Cleanup temporary files
for temp_file in temp_files:
try:
os.unlink(temp_file)
except Exception as e:
print(
f"Error deleting temporary file {temp_file}: {e}")