Docfile commited on
Commit
413f255
·
verified ·
1 Parent(s): c15c653

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -6
app.py CHANGED
@@ -3,8 +3,8 @@
3
  import pandas as pd
4
  from pycaret.regression import load_model, predict_model
5
  from fastapi import FastAPI
 
6
  import uvicorn
7
- from pydantic import create_model
8
 
9
  # Create the app
10
  app = FastAPI()
@@ -13,13 +13,27 @@ app = FastAPI()
13
  model = load_model("lr_api")
14
 
15
  # Create input/output pydantic models
16
- input_model = create_model("lr_api_input", **{'rownames': 1030, 'year': 1994, 'violent': 304.5, 'murder': 2.9000000953674316, 'prisoners': 152, 'afam': 1.769081950187683, 'cauc': 70.66014862060547, 'male': 18.20832061767578, 'population': 1.9304360151290894, 'income': 12036.8603515625, 'density': 0.023493800312280655, 'state': 'Utah', 'law': 'yes'})
17
- output_model = create_model("lr_api_output", prediction=63.6)
18
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  # Define predict function
21
- @app.post("/predict", response_model=output_model)
22
- def predict(data: input_model):
23
  data = pd.DataFrame([data.dict()])
24
  predictions = predict_model(model, data=data)
25
  return {"prediction": predictions["prediction_label"].iloc[0]}
 
3
  import pandas as pd
4
  from pycaret.regression import load_model, predict_model
5
  from fastapi import FastAPI
6
+ from pydantic import BaseModel
7
  import uvicorn
 
8
 
9
  # Create the app
10
  app = FastAPI()
 
13
  model = load_model("lr_api")
14
 
15
  # Create input/output pydantic models
16
+ class InputModel(BaseModel):
17
+ rownames: int
18
+ year: int
19
+ violent: float
20
+ murder: float
21
+ prisoners: int
22
+ afam: float
23
+ cauc: float
24
+ male: float
25
+ population: float
26
+ income: float
27
+ density: float
28
+ state: str
29
+ law: str
30
+
31
+ class OutputModel(BaseModel):
32
+ prediction: float
33
 
34
  # Define predict function
35
+ @app.post("/predict", response_model=OutputModel)
36
+ def predict(data: InputModel):
37
  data = pd.DataFrame([data.dict()])
38
  predictions = predict_model(model, data=data)
39
  return {"prediction": predictions["prediction_label"].iloc[0]}